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Prediction of Paroxysmal Atrial Fibrillation by
Analysis of Atrial Premature Complexes

Tran Thong*, Fellow, IEEE, James McNames, Member, IEEE, Mateo Aboy, Member, IEEE, and Brahm Goldstein

Abstract—Currently, no reliable method exists to predict the
onset of paroxysmal atrial fibrillation (PAF). We propose a pre-
dictor that includes an analysis of the R-R time series. The pre-
dictor uses three criteria: the number of premature atrial com-
plexes (PAC) not followed by a regular R-R interval, runs of atrial
bigeminy and trigeminy, and the length of any short run of parox-
ysmal atrial tachycardia. An increase in activity detected by any of
these three criteria is an indication of an imminent episode of PAF.
Using the Physionet database of the Computers in Cardiology 2001
Challenge, the predictor achieved a sensitivity of 89% and a speci-
ficity of 91%.

Index Terms—APC, atrial fibrillation, atrial tachycardia, ECG,
electrocardiogram, PAC, PAF, paroxysmal atrial fibrillation, pre-
diction.

I. INTRODUCTION

ATRIAL fibrillation (AF) is the most common sustained
tachyarrhythmia. In the United States alone, AF affects an

estimated 2.2 million people, with an increased incidence in the
elderly population [1]. Although not life-threatening, AF may
severely impact the quality of life and increase the risk of stroke.
Based upon clinical history, AF may be classified as paroxysmal
or chronic [2]. Paroxysmal AF (PAF) is defined as attacks of AF
lasting from 2 min to less than 7 days. Chronic AF is defined as
lasting more than 7 days. Chronic AF may be the end result of
PAF in about 30% of the group of PAF patients [3].

With advances in pacing therapy such as dual-site pacing
[4], [5], bi-atrial pacing [6], [7], and high rate atrial pacing [5],
the incidence of PAF may be significantly reduced. But the in-
creased pacing load, whether it is from pacing two anatomic
sites [8] and/or pacing at a higher rate than normal, coupled with
higher pacing voltages in the case of bi-atrial pacing, means that
the longevity of the battery-driven implanted pacing devices (ei-
ther a pacemaker or an implantable cardioverter-defibrillator) is
diminished. Thus, in terms of device longevity, advanced pacing
modes turned on only when an episode of PAF is imminent
would be advantageous.

In 2001, the Computers in Cardiology (CinC) Conference is-
sued the PAF Prediction Challenge [9], [10]. In cooperation with
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Physionet [11] a set of electrocardiogram (ECG) records [12]
were made available for analysis. The PAF Prediction Challenge
was closed in September 2001 and the final classification re-
leased in September 2002. The authors of the paper did not par-
ticipate in the original challenge, and, at the time the analyses
were completed, did not have knowledge of the correct classifi-
cation. The methods used by seven of the teams [13]–[19] who
participated in the Challenge were presented at the 2001 CinC
Conference in Rotterdam. Other teams did not document their
methods.

In this paper, we present an approach to the prediction of PAF
that is based on the analysis of the R-R time series. We found
that our approach predicted the onset of PAF more accurately
than the methods reported at the conference.

II. DATABASE

For the PAF Prediction Challenge, Physionet provided 100
sets of ECG records from 98 subjects [12]. Each set consisted
of two records, each 30 min long. The subjects were divided
into two groups of roughly equal size. All the subjects in the
first group, the “arrhythmic” group, had a history of PAF. The
two ECG records per set provided in this first group of subjects
consisted of one record immediately prior to an episode of PAF,
and the other record distant ( min) from any such episode.
The other group of “normal” subjects had no history of PAF, and
two ECG records were also provided for each set in this group.

The dataset was split into a learning set and a test set. The
learning set consisted of 50 sets of ECGs, 25 of them from
PAF subjects, and 25 from normal subjects. These ECGs were
recorded from 48 subjects, with 2 extra sets from the group to
make up the total of 50 sets. Physionet provided labels with
the learning set, indicating whether the record immediately pre-
ceded a PAF episode. The test set consisted of 50 sets of ECG
records from 50 subjects, which were provided without labels.
The number of PAF subjects in the test set was 28.

The challenge consisted of two events. For the first event,
entrants were asked to determine which of the 50 test records
were acquired from each of the two subject groups; namely, the
Arrhythmic group and the Normal group. Entries were given a
score that was equal to the number of correctly classified records
(0–50). For the second event, entrants were asked to determine
which of the two records from each subject preceded a PAF
episode. Subjects in the Normal group were always considered
correctly classified, thus the score was from 22 to 50.

Each ECG record consisted of two-channel traces from a
Holter recording. Physionet provided the time of the R peaks in
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Fig. 1. Example of oversensing due to noise. The arrows point to the detected
R waves. The second detected R wave is noise.

each record. These annotations were generated by an automatic
algorithm and were known to contain errors. An example of an
annotation error is illustrated in Fig. 1.

Although the detection of the P-waves would be useful in pre-
dicting PAF, automatic extraction of this feature from the ECG
requires advanced software [16], [18] not available to the au-
thors. Thus, we limited our analysis to interbeat (R-R) intervals.
To make up for our lack of advanced software to differentiate
between atrial and other premature complexes, the two-channel
ECG traces were used to visually verify that a premature com-
plex was of atrial origin and not from the atrioventricular (AV)
junction nor from the ventricle (a premature ventricular contrac-
tion or PVC). In any implementation in an implantable device
[4]–[8], P-wave detection from sensing electrodes in the (right)
atrium is a given fact. Thus, our manual step in this paper does
not impact any implementation in an implantable device.

III. METHODS

We hypothesized that prediction of PAF could be predicated
on a change from a “normal” state to an “at risk for PAF” state.
The physiologic changes that made the subjects more suscep-
tible to PAF are not addressed in this paper. The indicators in
the (R-R) rhythm predictive of this change are at the center of
this study.

It was necessary to assume that the state change took place
minutes prior to the episode of PAF, else preventive therapy
would not be effective. In this study, the rhythm far from any
episode of PAF is taken as the reference or normal state. The
goal is to detect a change in rhythm that favors the development
of PAF.

Since approximately 93% of episodes of PAF are triggered
by premature atrial complexes (PACs) [20], the identification of
PACs from the R-R time series was required. A PAC complex
was defined to be the PAC itself and the following atrial event,1

Fig. 2. Normal PAC and definition of PAC complex to include both the PAC
and the next P wave and its associated QRS.

as illustrated in Fig. 2. An Isolated PAC is preceded and fol-
lowed by two cycles of the prevalent rhythm. We identified four
separate categories of isolated PACs based on their PAC com-
plexes.

1) PAC with sinus node reset, Fig. 3(a). The ectopic P’
wave resets the sinus node within normal conduction
time. Thus, the next R-R interval is within 100 ms of the
prevalent R-R interval.

2) Interpolated PAC, Fig. 3(b). The associated QRS complex
occurs in the middle of a normal series of QRS, without
disrupting the prevalent rhythm. The sinus node is not
reset in this case.

3) PAC with delayed sinus node reset, Fig. 3(c). The ectopic
P’ wave is delayed in the path to the sinus node. Thus, the
next R-R interval is longer than the prevalent R-R interval
by

4) PAC with full compensatory pause, Fig. 3(d). In this case
the PAC causes the AV junction to be refractory, pre-
venting the next sinus node P-wave from being conducted
down to the ventricle. Due to conduction delay, the sinus
node is not reset. Thus, the time interval from the pre-
vious R wave to the R wave following the QRS complex
generated by the PAC is equal to twice the prevalent R-R
interval.

The R-R patterns associated with categories 2)–4) are not
unique to PACs. They have PVC counterparts: interpolated
PVC [21]; PVC with retrograde atrial conduction; and PVC
with full compensatory pause. Examples of these PVCs are
illustrated in Fig. 4. Thus, in the absence of a P wave detector,
ECGs were used to visually ascertain that a premature complex
of interest, as determined by the R-R time series, was indeed
a PAC.

In the following tests, the two records of a set are compared.
When one of the tests detects a difference between the two
records a rhythm change is declared.

We counted the number of isolated PACs in categories 2–4 for
each of the 30-min records of a subject. The following criteria
were used to determine which records preceded a PAF.

A. PAC Test

• If the difference in the number of PACs between the
two records of a subject was , a rhythm change was

1In this paper, which is R-wave based, we have to exclude patients with third-
degree (complete) AV block. Then each P generates a QRS, provided the AV
junction is not refractory due to the conduction of an earlier P or P’. The defini-
tion here is then applied to the associated QRS. second-degree AV block, which
was found in a number of the subjects, is not a problem because the intervals
associated are long and are not easily confused with premature complexes.
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Fig. 3. ECGs of various types of PACs (third QRS). (a). PAC with sinus reset, R R = R R . (b). Interpolated PAC, R R = R R . (c). PAC with
delayed sinus node reset, R R > R R . (d). PAC with full compensatory pause, R R = 2R R . QRS of PACs are similar to other QRS. R-R timing
is used to differentiate the four types of PACs. Note inverted P’ waves in (a), (c), (d). Horizontal tick marks are 200 ms apart.

Fig. 4. ECGs of various types of PVCs (third QRS). (a) PVC with full compensatory pause, R R = 2R R . (b) Interpolated PVC, R R = R R .
(c) PVC with retrograde conduction into the atrium, R R > R R . QRS of PVCs are significantly wider than normal QRS. R-R timing is used to
differentiate the three types of PVCs. Horizontal tick marks are 200 ms apart.
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Fig. 5. Tachogram of run of atrial bigeminies.

Fig. 6. Holter ECGs of run of atrial bigeminies.

detected. We declared the record with the larger number
of PACs as the one preceding the episode of PAF.

• If the difference was , no rhythm change was detected.
Further tests would be needed to diagnose this subject.

The PAC test was applied to isolated PACs. To account for atrial
bigeminies and trigeminies the PAC test must be supplemented
with a bigeminy test. The bigeminy tests described below ac-
count for both bigeminies and trigeminies.

B. Global Bigeminy Test

1) Identify changes in R-R of greater than 70 ms.
2) Filter the R-R intervals with a 10-point boxcar

(1)

where is an indicator that is 1 if the R-R interval
delta is greater than 70 ms and 0 otherwise.

Fig. 7. Test flow diagram.

3) Compute the average power of the filtered signal

(2)

where is the record length.2

4) The bigeminy test was applied to a subject only if the av-
erage power in at least one record was .3 Otherwise,
it was not applicable.

2Since y(n) is positive, the squaring operation was not absolutely required. It
was used to give additional weight to large values of y(n).

3Number determined experimentally.
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TABLE I
PAF LEARNING SET RAW RESULTS

5) The average powers of eligible subjects, per the criterion
in #4 above, were compared. If one power was greater
than the other by a factor of at least 1.5, a rhythm change
is declared.

6) Normally the bigeminy test was not allowed to override
the results of a positive PAC test. It was used only when
the PAC test yielded an inconclusive result (i.e., a differ-
ence in PACs of 0 or 1). However, if the ratio in Step 5)
was , the PAC test was overridden.

7) Similarly if the largest power in Step 4) was , the
PAC test was overridden. An example of such a rhythm
is illustrated in Figs. 5 and 6. The average powers due to
PACs were then compared as in Step 5). This was labeled
as the high bigeminy rate criterion.

The above bigeminy test was global (i.e., over 30 min). Fre-
quently, the changes were more localized.

C. Local Bigeminy Test

• Each record was divided into adjacent segments 100 inter-
vals long.

• In each segment, steps 1)–3) of the global bigeminy test
were performed. is now 100.

• The threshold in Step 4) was changed to 6.
• The ratio threshold was changed to 3.5.

D. End of Record Bigeminy Test

To account for a sudden burst of bigeminies at the end of the
record, another subtest was applied when the two subtests above
failed to detect a rhythm change.

• A rhythm change was detected if the end value of filtered
values given by (1) was (the filter output maximum is

10).

From a prevention point of view, this rhythm change detection
was too late for effective intervention.

Kolb et al. [20] reported that about 7.1% of PAF episodes
were triggered by either atrial flutters or atrial tachycardias.
Thus, our algorithm included a paroxysmal atrial tachycardia
(PAT) component. This PAT test also detected atrial flutter since
the analysis was based on QRS complexes. With typical 2:1 or
3:1 or even 4:1 AV block, an episode of atrial flutter would ex-
hibit a QRS rhythm similar to that of an episode of PAT.
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TABLE II
NORMAL LEARNING SET RAW RESULTS

E. PAT Test

• Three or more consecutive PACs, without any intervening
long intervals were considered to meet the PAT criterion.

The flow diagram to combine the above tests is presented in
Fig. 7. The global bigeminy test, when conditions 6) and 7) were
not met, the local bigeminy test, and the end of record bigeminy
test were all combined together in the last block “Bigeminy test
without override.” If a change was detected in any of these tests,
then a rhythm change was declared.

IV. RESULTS

The prediction algorithm was developed using the learning
set. The results are summarized in Tables I–III. The tables
showed that a combination of tests was required to achieve
good sensitivity without greatly compromising specificity.
On the PAF learning set, the predictor was able to detect a
rhythm change in all the record sets. When applied to the
normal learning set, the predictor only successfully identified
no change in rhythm in 84% of the record sets.

TABLE III
LEARNING SET RESULT SUMMARY

When the challenge set was evaluated, the results in Tables IV
and V were obtained. Using the published classifications [23],
the algorithm achieved a sensitivity of 89% and a specificity of
91%.

V. DISCUSSION

The CinC 2001 scores for our algorithm were 45 (out of 50)
and 25 (out of 28) for events I and II, respectively.4 These scores
were higher than those achieved by the other participants in the

4Before the final classification was released, we had submitted 17 entries for
event I, and 13 entries for event II. We started with scores of 36/50 and 22/28
with our initial entries.
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TABLE IV
CHALLENGE SET TEST UTILIZATION

challenge [13]–[19], [22]. The best results [23] in event I was
achieved by Schreier, et al. [18] with a score of 41/50.5 For the
second event, Zong and Mark [16] achieved the highest score.
Their scores were 40/50 and 22/28.6

Of the eight published algorithms [13]–[19], [22] developed
using the 2001 CinC Challenge dataset, the simplest one was the
one by Zong and Mark [16]. They used the frequency of PAC
as their main discriminator.7 Their initial score for event I was
35/50. This is similar to our performance by the PAC test alone;
namely, 36/50.

The algorithm presented in the current study is most similar to
the one reported by Hickey and Heneghan [22]. Their algorithm
was based on R-R intervals and QRS morphology. They used
the number of premature complexes, the number of PACs with
and without sinus node reset and two spectral measures. They
reported a score of 38/50 in the first Challenge. These results
were close to what was achieved with just the PAC set of tests;
namely, 36/50.

5This score was following their 8th entry. For event II, they submitted 2 entries
and scored 20/28.

6These scores were following their seventh and first entries, respectively.
7They used an automated arrhythmia detection algorithm that identifies beat

types (normal, PAC, PVC, etc.). The threshold for the predictor was derived
from the learning dataset.

The results of Zong and then Hickey and confirmed by the
PAC test here, indicated that to achieve a sensitivity greater than
75%, it was necessary to look beyond isolated PACs. The overall
method for predicting PAF in this paper paralleled the findings
of Kolb, et al. [20] and Hnatkova, et al. [24]. Hnatkova [24] re-
ported that PAF was initiated by a solitary ectopic beat in more
than 50% of the cases. Consistent with this result, the PAC test
was the most effective at identifying the records prior to the PAF
episodes. Kolb [20] reported that 93% of PAF episodes were ini-
tiated by PACs, and 7% by atrial flutter and tachycardia. To ac-
count for the 93%, the bigeminy tests were added to supplement
our PAC test. The PAT test was used to address the initiations
by atrial flutter and atrial tachycardia. As expected, the PAT cri-
terion was invoked in only a small fraction of the cases.

VI. CONCLUSION

We have presented a method for predicting PAF that paral-
leled the mechanisms for PAF initiation [20], [24]. The overall
sensitivity to rhythm change was 89% with a specificity of 91%.
The key component of this method was an analysis of isolated
PACs not followed by a regular R-R interval.

The duration of monitoring remains an open issue. In this
study the monitoring duration was fixed at 30 min. In five of the
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TABLE V
SUMMARY OF CHALLENGE SET CLASSIFICATIONS

six patients of the challenge dataset that were incorrectly classi-
fied in Table V, the number of PACs was relatively low. We spec-
ulate that a longer monitoring duration may alter the diagnoses.
Based on our experience with ventricular tachyarrhythmia pre-
diction [25], doubling the monitoring duration to one hour might
help in these cases.

At the cellular level, a possible model of PAF initiation is
action potential duration (APD) heterogeinity [26]. Increased
vagal activity may create nonuniform shortenings of the APD.
This APD nonuniformity may cause the prolonged P-wave.
When certain regions of the atria reach a critical shortening of
APD due to increased vagal activities, then re-entry circuits
may occur. During the transition from the normal state to PAF,
these regions with critical shortening may not be large enough
to sustain re-entry but they may cause an increase in the number
of PACs not followed by regular R-R intervals, due to unusual
conduction delay. These are the type 2–4 PACs that are detected
by the PAC test. Note that a type 1 PAC, which causes a sinus
node reset within normal conduction time, does not suffer any
unusual delay in its path to reset the sinus node.

The results presented here are based on hours of ECG
recording. Extensive prospective studies are needed to fully val-
idate the predictor presented in this paper. In particular, addi-

tional data from PAF patients to confirm the specificity8 of the
algorithm is required. The duration of the rhythm change is an-
other parameter of interest. While additional small adjustments
are likely required to further improve performance, we believe
that the algorithm presented in this study is robust and can serve
as the basis for future studies.
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