
Abstract Despite the exponential growth in heart

rate variability (HRV) research, the reproducibility

and reliability of HRV metrics continues to be de-

bated. We estimated the reliability of 11 metrics cal-

culated from 5 min records. We also compared the

accuracy of the HRV metrics calculated from ECG

records spanning 10 s to 10 min as compared with the

metrics calculated from 5 min records. The mean heart

rate was more reproducible and could be more accu-

rately estimated from very short segments (<1 min)

than any of the other HRV metrics. HRV metrics that

effectively highpass filter the R–R interval series were

more reliable than the other metrics and could be more

accurately estimated from very short segments. This

indicates that most of the HRV is caused by drift and

nonstationary effects. Metrics that are sensitive to low

frequency components of HRV have poor repeatabil-

ity and cannot be estimated accurately from short

segments (<10 min).
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1 Introduction

Heart rate variability (HRV) has received a tremen-

dous amount of attention since the seminal work of

Akselrod et al. [1]. Established clinical applications of

HRV include risk assessment of patients after myo-

cardial infarction and early diagnosis of diabetic

autonomic neuropathy [24, 57]. The physiologic

mechanisms underlying HRV continue to be investi-

gated [7, 26, 36, 52].

A task force of the European Society of Cardiology

and the North American Society of Pacing and Elec-

trophysiology published standards of measurement,

interpretation and use of HRV in 1996 [57]. The task

force specified many different HRV metrics for both

short-term records (5 min) and long-term records

(24 h). Although many other measures of HRV have

been proposed and investigated, those specified by the

task force have been the most widely applied.

Despite the exponential growth in HRV research

and the number of studies published addressing the

reliability, repeatability and reproducibility of HRV

metrics, this topic continues to be debated. Some

studies concluded that their examined HRV metrics

were reliable [2, 5, 8, 13, 14, 18, 19, 25, 29, 31, 34, 35, 39,

41, 50, 55, 58, 59, 60, 61], while others found the reli-

ability to be moderate or low [6, 23, 33, 51, 56, 62]. This

discrepancy of results may be due, in part, to the fact

that these studies examined distinct subject popula-

tions, and their conclusions on HRV reliability apply

only to the specific HRV metrics studied.
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In this paper, we address how the accuracy of time-

and frequency-domain HRV metrics varies with the

record duration and estimate the reliability of these

metrics calculated from 5 min records. In order to

address the question of HRV reliability, we studied the

reliability of the most widely used HRV metrics in

three different databases. We used publicly available

databases to ensure the reproducibility of our results.

Additionally, we propose a new methodology and

visualization technique which can be used to assess

the segment length required for a given degree of

accuracy.

2 HRV metrics

We studied four time-domain and six frequency-do-

main metrics, recommended by the task force for

short-term ECG records. We also studied approximate

entropy as a measure of the complexity of HRV. We

denote each of the N beat times as t(n) for n2{1,...,N}.

We denote the interval between beats as d(n) = t(n) –

t(n – 1). As recommended by the task force, we define

the time of occurrence of each interval d(n) as t(n).

2.1 Time domain metrics

2.1.1 Standard deviation of the normal-to-normal

We calculated the standard deviation of the normal-to-

normal (NN) intervals (SDNN) as

SDNN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 2

X

N

n¼2

dðnÞ � �d
� �2

v

u

u

t ð1Þ

where �d is the average NN interval,

�d ¼ 1

N � 1

X

N

n¼2

dðnÞ: ð2Þ

The scaling factor is N – 2 because there are N – 1

intervals in the record and one degree of freedom is

used to estimate the mean NN interval.

2.1.2 HRV triangular index

The HRV triangular index (HRVTI) is a measure of

the shape of the NN interval distribution. Generally,

uniform distributions representing large variability

have large values and distributions with single large

peaks have small values. The metric is defined in terms

of a histogram of the NN intervals. Here, we represent

the number of intervals in the ith bin centered at ti as

b(ti). HRVTI is then defined as

HRVTI ¼
PNb

i¼1 bðtiÞ
maxi bðtiÞ

¼ N � 1

maxi bðtiÞ
ð3Þ

where Nb is the number of bins. We used a constant bin

width of 1/(fs) = 8 ms. The task force did not specify

how to align the bins. We chose to locate the bin

centers at integer multiples of 1/fs so that each bin only

contained equal intervals.

2.1.3 Root mean square of successive NN interval

differences

We calculated the root mean square of successive NN

interval differences (RMSSD) as

RMSSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 2

X

N

n¼3

dðnÞ � dðn� 1Þ½ �2
v

u

u

t : ð4Þ

2.1.4 Standard deviation of successive NN interval

differences

We calculated the standard deviation of successive NN

interval differences (SDSD) as

SDSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 3

X

N

n¼3

dðnÞ � dðn� 1Þ � �dd
� �2

v

u

u

t ð5Þ

where �dd is given by

�dd ¼
1

N � 2

X

N

n¼3

dðnÞ � dðn� 1Þ: ð6Þ

In most cases �dd is nearly zero and there is little dif-

ference between RMSSD and SDSD.

2.2 Frequency domain metrics

All frequency domain HRV metrics are based on the

estimated power spectral density (PSD) of the NN

intervals. Although the task force gave specific defini-

tions of the metrics, it did not specify how to estimate

the PSD. There are many methods of estimating PSD

and each generates different HRV metric values. If the

NN interval series is not well behaved or too short, as

in our case, these differences can be substantial. In this

section we give a complete description of our PSD

estimator, as required by the task force.
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We smoothed and uniformly resampled the NN

intervals at a rate of 3 Hz with a kernel smoother,

dðkÞ ¼
PN

n¼1 dðnÞb jkTs�tðnÞj
rb

� �

PN
n¼1 b jkTs�tðnÞj

rb

� � ð7Þ

where Ts = 1/3 s is the resample interval, rb is the

kernel width, and b(Æ) is a clipped and scaled Gaussian

kernel function

expð�u2=2Þ �5 � u � 5
0 otherwise.

	

ð8Þ

We generated the uniformly resampled signal d(k)

over the duration of the ECG record. The kernel

smoother also acts like a lowpass filter with a cutoff

frequency determined by rb. Large values of rb reduce

aliasing but can bias HRV metrics that rely on accurate

estimates of the PSD at higher frequencies. We used

rb = 0.25 s.

We applied Welch’s nonparametric method of Pe-

riodogram averaging to estimate the PSD of d(k). This

estimate is calculated as the average of Periodograms

calculated from overlapping segments of d(k),

R̂ðejxÞ ¼ 1

KL

X

K�1

i¼0

X

L�1

k¼0

dðkþ iLÞ � �d
� �

wðkÞe�jxk































2

ð9Þ

where K is the number of segments, L is the number of

samples in each segment, �d is the sample average of

d(k) over the full record, and w(k) is a window function

that determines the tradeoff between main lobe width

and sideband leakage. We used a Blackman window

with a length of 20 s or the duration of the record,

whichever is shorter. We allowed a 50% overlap be-

tween segments. Each segment was padded with zeros

to a total length of 4,096 samples to minimize the error

in estimating the signal power over specified frequency

ranges with Riemann sums.

2.2.1 Low frequency

The low-frequency (LF) power was calculated as the

total signal power in the frequency range of 0.04–

0.15 Hz.

2.2.2 High frequency

The high-frequency (HF) power was calculated as the

total signal power in the frequency range of 0.15–

0.40 Hz.

2.2.3 LF norm

The low-frequency normalized (LF norm) power was

calculated as

LF norm ¼ 100� LF

TP�VLF
ð10Þ

where TP is the total signal power is defined below and

VLF is defined as the total signal power at frequencies

less than 0.04 Hz.

2.2.4 HF norm

The high frequency normalized (HF Norm) power was

calculated

HF norm ¼ 100� HF

TP�VLF
: ð11Þ

2.2.5 Low frequency/high frequency

The low frequency–high frequency ratio (LF/HF) was

calculated as LF/HF.

2.2.6 Total power

The total power (TP) was calculated as the integral of

the PSD estimate over the full frequency range of 0.0–

1.5 Hz. This is approximately equal to the variance of

d(k).

2.3 Complexity metrics

2.3.1 Approximate entropy

Approximate entropy is one of the nonlinear metrics

which has been used to analyze the R–R intervals in

order to estimate reductions of complexity associated

with specific pathologies [32, 42]. Approximate entropy

was introduced as a quantification of regularity in se-

quences and time series data, initially motivated by

applications to relatively short, noisy data sets. Math-

ematically it is part of a general development of

approximating Markov Chains to a process [44]. It

provides a finite sequence formulation of randomness,

via proximity to maximal irregularity [47, 49]. A sta-

tistical evaluation of approximate entropy (ApEn) is

available in [46]. ApEn is scale invariant and model

independent, evaluates both dominant and subordinate

patterns in data, and discriminates series for which

clear feature recognition is difficult. It measures the
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logarithmic likelihood that runs of patterns that are

close remain close on subsequent incremental com-

parisons, and assigns a non-negative number to a time

series, with larger values corresponding to more com-

plexity or irregularity in the data. ApEn has two user-

specified parameters: a run length m and a tolerance

window r. It is important to consider ApEn(m, r), or

ApEn(m, r, N), where N is the number of points of the

time series, as a family of parameters: comparisons

between time series segments can only be made with

the same values of m and r [45]. Formally, given N data

points from a time series {x(1), x(2),..., x(N)}, the ApEn

is computed according to:

• From a sequence of m-vectors X(1), X(2),...,X(N –

m + 1) defined as X(i) = [x(i),

x(i + 1),...,x(i + m – 1)], i = 1,2,...,N – m + 1.

These vectors represent m consecutive x values,

commencing with the ith point.

• Calculate the distance between X(i) and X(j),

d[X(i),X(j)], as the maximum absolute difference

between their respective scalar components,

d½XðiÞ;XðjÞ� ¼ max
k¼0;1;...;m�1

ðjxðiþ kÞ � xðjþ kÞjÞ ð12Þ

• For a given X(i), count the number of j (j = 1,2,...,

N – m + 1) for j „ i such that d = [X(i),X(j)] £ r,

denoted as Nm(i). Then, for i = 1,2,...,N – m + 1,

Cm
r ðiÞ ¼

NmðiÞ
N �mþ 1

ð13Þ

The Cr
m(i) values measure, within a tolerance r, the

regularity (frequency) of patterns similar to a given

segment of length m.

• Compute the natural logarithm of each Cr
m(i), and

compute the average of it over i,

/mðrÞ ¼ 1

N �mþ 1

X

N�mþ1

l¼1

ln Cm
r ðiÞ ð14Þ

where /m(r) represents the average frequency of all

the m-point patterns in the sequence remain close to

each other.

• Increase the dimension to m + 1. Repeat steps (1)

to (4) and find Cr
m+1 and /m+1(r).

• Theoretically, the ApEn is defined as,

ApEnðm; rÞ ¼ lim
N!1

/mðrÞ � /mþ1ðrÞ
� �

: ð15Þ

There are two ways to look at ApEn. From one

point of view, it is a statistical metric (the average of

the logarithm of a conditional probability), which

makes it applicable to both deterministic and stochastic

processes. From another point of view, it reflects the

rate of new pattern generation and is thus related to

the concept of entropy [22].

In practice, the number of data points N is finite. We

implemented this formula by defining the statistic [43]:

ApEnðm; rÞ ¼ /mðrÞ � /mþ1ðrÞ: ð16Þ

In this study, we calculated the estimated ApEn of

the interbeat interval series d(n). ApEn was estimated

with the established parameter values of m = 1 and

r = 0.25 rd, where rd is the sample standard deviation

of d(n). Normalizing r in this manner gives ApEn a

translation and scale invariance, in that it remains un-

changed under uniform process magnification, reduc-

tion, or constant shift to higher or lower values [45].

Several studies have demonstrated that these input

parameters produce good statistical reproducibility for

ApEn [27, 43, 48].

3 Duration/reliability analysis

3.1 Duration analysis

3.1.1 Patient population

We used the normal sinus rhythm R–R interval data-

base posted on PhysioNet [40]. The database includes

the beat times of 54 long-term ambulatory ECG

recordings (21.4–24.2 h, 1,280 h total). The recordings

were acquired from 30 men (ages 28.5–76 years) and 24

women (ages 58–73 years). The original recordings

were sampled at a rate of 128 Hz. The beat and rhythm

annotations were generated by an automatic algorithm

and then manually reviewed and corrected.

3.1.2 Record sampling

We randomly selected 1,000 15-min records with

replacement from the database. For each case, we

randomly selected a subject and a 15 min record from

the entire recording. We then discarded all records did

not consist entirely of normal sinus rhythm beats. This

reduced the number of usable records to 696.

3.1.3 Figure of merit

We calculated each of the 11 HRV metrics using seg-

ments of each 15 min ECG record. The segment

durations ranged from 10 s to 10 min. We treated a
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5 min segment in the center of each 15 min record

(300–600 s) as a short-term ECG baseline record. We

randomly selected segments of 5 min or less from the

5 min baseline. We selected segments of more than

5 min randomly from the 15 min record, but the

selection was constrained to include all of the 5 min

baseline. For each duration, we calculated the percent

difference between the HRV metric calculated from

the randomly selected segment and the 5 min baseline,

�ði; sÞ ¼ 100�mði; sÞ �mBLðiÞ
rBL

ð17Þ

where �(i,s) is the percent difference, i2{1, ..., 696} is

the record index, s is the duration of the randomly

selected segment, m(i,s) is the metric calculated from

the randomly selected segment, mBL(i) is the metric

calculated from the baseline, and rBL is the sample

standard deviation of the metric calculated from the

baselines of all 696 records.

3.2 Reliability analysis

3.2.1 Patient population

We used three data bases posted on PhysioNet [40].

The databases included the normal sinus rhythm RR

interval database described previously, the European

ST-T database, and the cardiac arrhythmia suppression

trail (CAST) database. The European ST-T database

consists of 90 annotated ambulatory recordings from 79

subjects. Each subject was diagnosed or suspected of

having myocardial ischemia. The database includes

patients with hypertension, ventricular dyskinesia.

Some subjects were taking medication that may have

affected their recordings. The original signals were

sampled at 250 Hz.

The CAST database consisted of 762 pre-treatment

recordings from patients who had an acute myocardial

infarction within the preceding 2 years. Most of the

signals were sampled at 128 Hz. All others were sam-

pled at 125.4 Hz.

All three databases contained annotations that were

generated by an automatic algorithm and then manu-

ally reviewed and corrected by one or more experts.

3.2.2 Record sampling

For each recording, we randomly selected a 15-min

segment. If the segment did not consist entirely of

normal sinus rhythm beats, we resampled the record-

ing. Up to 500 attempts were made to find a 15-min

segment with normal sinus rhythm beats. This resulted

in fifty 15-min records out of 54 possible for the Nor-

mal Sinus Rhythm database, 41 out of 90 possible for

the European ST-T database, and 480 out of 762 pos-

sible for the CAST database.

3.2.3 Intraclass correlation coefficients

Reliability analysis is a means of assessing what frac-

tion of the variability in observed values is due to

measurement error. We used intraclass correlation

coefficients (ICC) as our measure of reliability [38, 53].

The ICC is defined as a ratio of explained variation to

total variation. The calculation of these coefficients

requires repeated measurements of the same entity,

but allows for random errors in each measurement.

There are several types of ICC that one may choose

from depending on the statistical model of the study.

We chose a one-way random effects model that can be

estimated with an analysis of variance (ANOVA)

model II with random factor levels. This treats each

observation as a realization of the following random

process

yij ¼ li þ eij ð18Þ

where i is the record index, j is the measurement in-

dex, li are independent and normally distributed

N(l.,rl
2), eij are independent and normally distributed

N(0,r2), and li and eij are mutually independent.

We treated the metrics calculated from the first (0–

300 s) and last (600–900 s) 5 min segments of each

15 min record as a repeated measurement of the same

entity. The ICC was calculated as,

q̂ ¼ MSTR�MSE

MSTRþ ðM � 1ÞMSE
¼

r̂2
l

r̂2
l þ r̂2

ð19Þ

where M = 2 is the number of measurements per en-

tity, MSTR is the treatment mean square, and MSE is

the error mean square. This is an estimate of the true

ICC defined as

q ¼
r2

l

r2
l þ r2

: ð20Þ

The estimate is biased, but consistent and tolerant

of modest departures from normality [53]. Values

close to one indicate that the variation between

entities is significantly greater than measurement er-

ror and values close to zero indicate that the mea-

surement error is too large to accurately discern

differences between entities.
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4 Results and discussion

Our results indicate that all the HRV metrics included

in this study are sensitive to changes in duration of the

ECG segment (Fig. 1). In these plots we show the

median and four ranges of the percent difference in

(17) for ECG segment durations ranging from 10 s to

10 min. From these results we also conclude that most

of the HRV metrics are biased estimates. This confirms

the task force’s statement that metrics calculated from

segments of different durations are not comparable

[57].

The plots in Fig. 1 indicate that all the HRV metrics

are sensitive to changes in the duration of the ECG

segment. Most of the total HRV is caused by drift and

nonstationary effects that cannot be estimated accu-

rately from short segments. HF, SDSD, and RMSSD

had the best overall performance because they both

effectively highpass filter the NN interval series and are

thereby less sensitive to these effects than the other

metrics. The bias and variance of HF, SDSD, and

RMSSD were small and comparable to the mean heart

rate (MHR).

The results of the reliability study (Tables 1, 2, 3)

demonstrate that the MHR was much more repro-

ducible than any of the other HRV metrics. RMSSD,

SDSD, and HF were significantly more reliable than

the other metrics and achieved an ICC comparable

to MHR. ApEn was the most unreliable metric of

the HRV measures tested in this study. We also note

that pairs of 5 min segments spaced 5 min apart are

not actually repeated measurements of the same

entity since the NN interval series is known to be a

nonstationary process. Here we assumed that the

process is locally stationary and that the metrics

calculated from each pair of segments can be treated

as independent samples drawn from the same dis-

tribution.

It is important to recognize that reliability depends

on the variability between subjects, that is, the second

column of Tables 1, 2, and 3 varies across databases.

This may explain the discrepancy in the ICCs across

the databases, and the discrepancy of the results of

reliability studies on HRV metrics reported in the lit-

erature. However, the first column should be reason-

ably consistent across databases. Additionally, the

precise measurement of the NN intervals also affect

the reliability of the HRV metrics [4, 10, 11, 12, 15, 16].

Our results complement those of several other re-

search groups that have studied the reproducibility of

HRV metrics in a variety of situations. In general, the

objective of previous works has been to assess the

reproducibility of a subset of the HRV metrics used to

study a specific patient population or condition of

interest. These studies include research on the short-

and long-term reproducibility of autonomic measures

in supine and standing positions [31], reproducibility of

HRV responses to graded lower body negative pres-

sure [20, 34], reliability of short-term HRV measures

during exercise [3, 28, 30, 62], reproducibility of mea-

sures of cardiovascular autonomic nervous function in

middle age and elderly subjects [23], reproducibility of

frequency domain HRV metrics before and after a

standardized meal [18], HRV analysis reproducibility

in the chronic phase of myocardial infarction [5],

reproducibility of HRV from short-term recording

during manoeuvres in normal subjects [9], stability of

short recordings in time [54] and reproducibility of

HRV metrics obtained from short-term sampling re-

cords [21, 37]. In addition to the reproducibility of 24 h

and 5 min records, assessing the reproducibility of

HRV metrics calculated from very short records has

significant practical importance [25], since it is not al-

ways possible to obtain 5 min records due to instru-

mentation constraints or study design [17]. For

example, many 12-lead ECG instruments acquire re-

cord of only 10 s in duration.

The main limitation of this work is that we analyzed

data from ambulatory recordings, possibly not col-

lected under stationary conditions as recommended by

the task force. This may partly explain the lower reli-

ability of the normal sinus rhythm database metrics.

These subjects may also have been more active than

the other groups.

5 Conclusion

We estimated the reliability of 11 metrics calculated

from 5 min records and compared the accuracy of the

HRV metrics calculated from ECG records spanning

10 s to 10 min to that calculated from a 5 min record

and proposed a new methodology and visualization

technique which can be used to assess the segment

length required for a given degree of accuracy. Our

results indicate that all the HRV metrics are sensitive

to changes in the duration of the ECG segment. Most

of the total HRV is caused by drift and nonstationary

effects that cannot be estimated accurately from short

segments. HF, SDSD, and RMSSD had the best overall

performance because they both effectively highpass

filter the NN interval series and are thereby less sen-

sitive to these effects than the other metrics. The re-

sults of the reliability study demonstrate that the MHR

was much more reproducible than any of the other

HRV metrics.
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Fig. 1 Plots of the difference between eleven different heart rate
metrics calculated from a range of segment durations and a
5 min baseline segment. This figure shows the mean heart rate
and the other eleven plots show HRV metrics. Each plot shows
the median difference and three ranges calculated from 696 15-

min records. The differences are shown as a percentage of the
standard deviation of metric calculated from the 5 min baseline
of all 696 records. The gray vertical bars show four different
ranges of each metric: 25–75, 10–90, 5–95, 1–99%
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