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Abstract—Lempel-Ziv complexity (LZ) and derived LZ algo-
rithms have been extensively used to solve information theoretic
problems such as coding and lossless data compression. In recent
years, LZ has been widely used in biomedical applications to esti-
mate the complexity of discrete-time signals. Despite its popularity
as a complexity measure for biosignal analysis, the question of LZ
interpretability and its relationship to other signal parameters and
to other metrics has not been previously addressed. We have car-
ried out an investigation aimed at gaining a better understanding
of the LZ complexity itself, especially regarding its interpretability
as a biomedical signal analysis technique. Our results indicate
that LZ is particularly useful as a scalar metric to estimate the
bandwidth of random processes and the harmonic variability in
quasi-periodic signals.

Index Terms—Complex analysis, Lempel-Ziv complexity (LZ),
nonlinear analysis.

I. INTRODUCTION

THE metric of complexity proposed by Lempel and Ziv (LZ)
to evaluate the randomness of finite sequences has been ex-

tensively used to solve information theoretic problems [1]–[9]
and applications such as coding [10]–[12], data compression
[13]–[19], and generation of test signals [20]–[22]. This com-
plexity measure is related to the number of distinct substrings
(i.e., patterns) and the rate of their occurrence along a given
sequence [2].

In recent years, LZ has been applied extensively in biomed-
ical signal analysis as a metric to estimate the complexity of
discrete-time physiologic signals. For instance, LZ has been
used for recognition of structural regularities [23], for com-
plexity characterization of DNA sequences [24], to develop
new methods for discovering patterns in DNA sequences by
applying it to genomic sequences of Plasmodium falciparum
[25], to characterize the responses of neurons of the primary
visual cortex to different kinds of stimuli [26], and to estimate
the entropy of neural discharges (spike trains) [27]. In a recent
study, a new sequence distance measure for phylogenetic tree
construction has been proposed based on the relative infor-
mation between the sequences using LZ complexity [28]. LZ
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complexity has also been used to study brain function [29],
brain information transmission [30], EEG complexity in pa-
tients with Alzheimer’s disease [31], and epileptic seizures
[32]. Other authors have used LZ complexity to study ECG
dynamics [33], to detect ventricular tachycardia and fibrillation
[34], [35], to predict movement in anaesthesia in animals [36],
to estimate the depth of anaesthesia [37], [38] and to quantify
oscillations in uterine electromyography [39].

Generally, previous work involving the application of LZ in
the context of biomedical signal analysis has consisted of ana-
lyzing signals from a specific patient population or pathology,
and identifying a LZ change associated with a specific condition
of interest. However, despite its popularity as a tool for biomed-
ical signal analysis, the question of LZ interpretability and its
relationship to other signal parameters or metrics have not been
previously addressed, and none of the previous studies carried
out a thorough investigation aimed at gaining a better under-
standing of the LZ itself.

In this paper, we present the results of a study designed to
enable researchers to interpret the LZ metric in terms of clas-
sical signal processing concepts such as frequency, number of
harmonics, frequency variability of the harmonics, and signal
bandwidth.

II. METHODS: LEMPEL-ZIV COMPLEXITY

LZ complexity analysis is based on a coarse-graining of the
measurements. Before calculating the LZ complexity measure

, the signal must be transformed into a finite symbol se-
quence. In the context of biomedical signal analysis, typically
the discrete-time biomedical signal is converted into a bi-
nary sequence. By comparison with the threshold , the signal
data are converted into a 0–1 sequence as follows [37]:

(1)

where

if
otherwise

(2)

Usually the median is used as the threshold because of its
robustness to outliers [39].

Previous studies [29], [30], [32]–[34] have shown that 0–1
conversion is adequate to estimate the LZ complexity in biomed-
ical signals. In order to compute LZ complexity, the sequence
is scanned from left to right and the complexity counter is
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increased by one unit every time a new subsequence of consec-
utive characters is encountered. The complexity measure can be
estimated using the following algorithm [34], [37], [38].

1) Let and denote two subsequences of and be the
concatenation of and , while sequence is derived
from after its last character is deleted ( denotes the
operation of deleting the last character in the sequence).
Let denote the vocabulary of all different subse-
quences of . At the beginning, , ,

, therefore, .
2) In general, , , then

; if belongs to ,
then is a subsequence of , not a new sequence.

3) Renew to be , and judge if belongs
to or not.

4) Repeat the previous steps until does not belong to
. Now is not

a subsequence of , so
increase by one.

5) Thereafter, is renewed to be ,
and .

The above procedure is repeated until is the last character.
At this time the number of different subsequences in —the
measure of complexity—is . In order to obtain a complexity
measure which is independent of the sequence length, must
be normalized. If the length of the sequence is and the number
of different symbols in the symbol set is , it has been proved
that the upper bound of is given by [2]

(3)

where is a small quantity and . In general,
is the upper bound of , where the base of the

logarithm is , i.e.,

(4)

For a 0–1 sequence, , therefore

(5)

and can be normalized via

(6)

where , the normalized LZ complexity, reflects the arising
rate of new patterns in the sequence.

III. SIMULATION STUDY

A. Simulated Signals

In this section, we describe the signals used to study the LZ
measure of complexity, and its interpretability in terms of clas-
sical signal processing concepts such as frequency, number of

harmonics, frequency variability of signal harmonics, and signal
bandwidth. These synthetic signals have been used to study the
Approximate Entropy measure of irregularity, and have been
described elsewhere [40]. We have included a summarized de-
scription of the signals in this paper for completeness.

Since most physiologic signals such as arterial blood pressure
(ABP), intracranial pressure (ICP), electrocardiograms (ECG),
pulse oximetry (SpO2), microelectrode recordings (MER),
electroencephalograms (EEG), and magnetoencephalograms
(MEG) are analog signals that are digitized for the purposes
of analysis and storage, the digital signals we used in our
study are assumed to be digital representations of analog
signals. Consequently, the values of any of the time-series

, we studied are assumed to correspond
the measurements made on an analog physiologic signal
at times instances , where denotes the
sampling period.

1) LZ Versus Frequency: The first test consisted in analyzing
how changes in amplitude and frequency of sinusoidal signals
affected the LZ. For this purpose we generated two synthetic
signals. The first of these consisted in a constant amplitude chirp
signal whose frequency was swept linearly from 0.5 Hz to 5
Hz in 40 s. The second signal was created by modulating the
amplitude of the chirp signal by a pure sinusoid. LZ was applied
to each of the two signals using a moving window of 10 s with
90% overlap with the objective of testing whether or not LZ
is sensitive to frequency or amplitude changes. Fig. 1(a), and
(b) shows the constant chirp signal, the amplitude modulated
chirp, and the spectrogram of the amplitude modulated chirp,
respectively.

2) LZ Versus Frequency Content: This test was designed to
determine the relationship of LZ and the frequency content of
periodic signals. We generated four periodic signals of 10 s in
duration with 1, 2, 5, and 7 frequency components, respectively.
The four signals were concatenated and the LZ metric was ap-
plied to the resulting vector using a moving window of 10 s with
90% overlap. Fig. 1(c) shows the composite signal used in this
test.

3) LZ Versus Quasi-Periodic Signal Plus Noise: The objec-
tive of this test was to determine if LZ is sensitive to changes in
noise power present in quasi-periodic signals. For this purpose
we generated an amplitude-modulated harmonic quasi-periodic
signal 40 s in duration, and added white Gaussian noise of var-
ious power to different portions of the signal. The noise power
was increased every 10 s (1, 1.1, 1.3, and 1.5). The LZ metric
was applied to the resulting vector using a moving window of
10 s with 90% overlap. Fig. 1(d) shows the sinusoid plus noise
signal.

4) LZ Versus Noise Power: In this test, the LZ was applied
using a moving window of 10 s with 90% overlap to a 40-s white
Gaussian noise sequence with power increasing in steps each
10 s (0.1, 0.3, 0.5, and 0.7). The objective of this test was to
determine if given the same underlying signal structure (white
noise) the LZ is affected by the power of the noise. Fig. 1(e)
shows this signal in the time domain.

5) LZ Versus Noise Bandwidth: This test consisted of deter-
mining the relationship between LZ and the noise bandwidth.
The synthetic signal consisted on a 40-s time series composed
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Fig. 1. Synthetic signals used in this study. (a) Chirp signal with constant amplitude (f = 0:5, f = 5 Hz), Test 1. (b) Amplitude modulated chirp signal.
and its spectrogram. (c) Muti-tone signal used in Test 2. (d) Amplitude-modulated noisy signal with step increasing in noise power (Test 3). (e) White Gaussian
Noise with step increases in noise power (Test 4). (f) Colored noise with step increases in noise bandwidth (Test 5). (g) Spectrogram of the signal shown in (f).
(h) Spectrogram of the synthetic signal with step increases in stochastic variability (Test 6). (Color version available online at http://ieeexplore.ieee.org.)

of four segments of colored noise with increasing spectral band-
width. The LZ metric was applied using a moving window of
10 s with 90% overlap. Fig. 1(f) and (g) show the signal in this
time domain and its spectrogram, respectively.

6) LZ Versus Frequency Domain Stochastic Variability: In
this test, we studied how the variability of signal harmonics af-
fect the LZ complexity measure. We generated synthetic signals
using a harmonic model with increasing stochastic variability
of the signal harmonics. The fundamental frequency of the har-
monics was modeled as an AR processes with adjustable band-
width. This model is very general and can be used to model
many biomedical signals including pressure signals, refer to
[40] for details. We estimated the LZ of the synthetic signals
using a moving window of 10 s with 90% overlap. Fig. 1(h)
shows an spectrogram of a synthetic signal [41].

7) Standard Error of the LZ Versus Signal Bandwidth: In this
test, we studied the standard error of LZ estimates as a function
of the signal bandwidth. We generated 5000 independent real-
izations of four stochastic signals with different bandwidth: 1)
gaussian white noise; 2) uniform white noise; 3) colored noise
with bandwidth (colored noise I); 4) colored noise

with bandwidth (colored noise II), where de-
notes the sampling frequency ( in this case).

B. Example on Real Signals

As an example application on real signals we estimated the
LZ complexity on intracranial pressure signals (ICP) containing
acute intracranial hypertension (ICH) episodes. These signals
were obtained from patients with brain injury admitted to the
Intensive Care Unit at Doernbecher Children’s Hospital, Oregon
Health and Science University (Portland, OR). LZ was applied
to detrended ICP signals (i.e., the ICP mean was removed) to
study whether measures of complexity obtained from the pulse
morphology alone correlate with mean ICP.

IV. RESULTS AND DISCUSSION

The results of Test 1 show that for a sinusoidal signal with
a quadratic angle , LZ increases as the
frequency of a sinusoid increases, and that amplitude modula-
tion of a signal does not result in an increase of LZ, as it can be
observed in Fig. 2(a) and (b), respectively.
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Fig. 2. Results of the tests performed to gain better understanding LZ and its interpretation. (a) Relationship between LZ and signal frequency, (b) LZ and amplitude
modulation, (c) LZ versus number of harmonics, (d) LZ versus SNR, (e) LZ versus noise power, (f) LZ versus noise bandwidth, (g) LZ versus stochastic variability
of signal harmonics, and (h) LZ versus Noise bandwidth variability.

Fig. 2(c) shows the results of Test 2. This test was designed to
determine the relationship of LZ and the frequency content of
periodic signals. Based on the results shown in Fig. 2(c) we
conclude that LZ is not sensitive to the number of harmonics
in periodic signals. Additionally, the LZ complexity in periodic
signals with constant frequency is considerably less than in si-
nusoidal signals with variable frequency such as chirp signals
where the frequency increases linearly with time as in Test 1
(e.g., in periodic versus in the
chip signal we tested).

The results of Test 3 show that LZ is sensitive to changes in
noise power present in quasi-periodic signals. LZ increases as
the power of the noise increases. However, the results of Test 4
show that given the same underlying signal structure (white
Gaussian noise) the LZ is not affected by the power of the noise
as shown in Fig. 2(e). This indicates that there is a dependance
between LZ and the noise power at high signal-to-noise ratio
(SNR). LZ increases as the power of the noise increases until
it reaches saturation, as it can be seen in Fig. 2(e). Note that in
the case of white Gaussian noise, the LZ complexity measure
is approximately equal to 1, independently of the noise power,
which suggest that LZ complexity is bounded between 0 and 1
(approximately). This is a significant advantage of the LZ metric
over other measures of complexity.

Fig. 2(f) shows the results of Test 5. This test consisted of de-
termining the relationship between LZ and the noise bandwidth.
The synthetic signal was composed of four segments of colored
noise with increasing spectral bandwidth, as it can be seen in the

Fig. 3. Results of the test to study the standard error of the LZ as a function of
the signal bandwidth. The standard error of the LZ estimates decreases as the
bandwidth of the process increases.

spectrogram shown in Fig. 1(g). The results of this test demon-
strate that LZ in sensitive to signal bandwidth changes. LZ in-
creases as the signal bandwidth increases. This is significant in
the context of biosignal analysis, since there are numerous ap-
plications where we are interested in estimating the bandwidth
of a physiologic or residual signal. The LZ complexity measure
may be used for this purpose.

In Test 6, we studied how the variability of signal harmonics
affect the LZ complexity measure. The LZ metric was applied to
synthetic signals generated using a harmonic model where the
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Fig. 4. Results showing the relation between the LZ applied to ICP versus the ICP signal. Note that LZ decreases during periods of ICH.

variability of the signal harmonics was increased, that is, the
bandwidth of the process used to generate the signal harmonics
was increased as a function of time. In this case, the signal was
generated by concatenating four signals with different stochastic
variability of the harmonics. The spectrogram shown in Fig. 1(h)
shows how the variability of the harmonics increases as a func-
tion of time. Fig. 2(g) shows the results of this test. The test
results demonstrate that LZ is sensitive to changes in the vari-
ability of the signal harmonics. It is also remarkable the fact that
using the LZ metric we can determine the four abrupt changes
in the stochastic variability of the signal harmonics, since these
are not even detectable by visual examination of the spectro-
gram. The result of this test is particularly important in the con-
text of biomedical signal processing and analysis, since many
physiologic signals can be accurately modeled as a sum of si-
nusoids where the fundamental frequency is represented as an
AR process (e.g., ABP, ICP, SpO2, and ECG). This result indi-
cates that we can apply LZ complexity directly to a physiologic
signal without any preprocessing and detect variability changes
in the signal harmonics. For instance, if we analyze a pressure
signal such as ABP or ICP by directly applying the LZ com-
plexity measure to the time-series, we can detect heart rate vari-
ability (HRV) changes associated with specific patient popula-
tions or specific conditions, since the harmonics that compose
pressure signals correspond to the cardiac components. More
accurate HRV analysis can be performed by applying a band-
pass filter centered at the heart rate frequency to the pressure
signal, and analyzing the filtered signal using the LZ measure of
complexity. This results also suggest that LZ complexity may be
used to perform HRV analysis directly on ECG signals without
the need to perform QRS detection (i.e., without the interbeat

interval time-series). Thus, studies involving the application of
LZ complexity to pressure signals or ECG signals should be in-
terpreted in connection to HRV.

In Test 7, we studied the variability of the LZ estimates by
creating replicas of the signal used in Test 4. Fig. 2(h) shows
the variability of the LZ estimates as a function of time. Fig. 3
shows histograms for four signals with different bandwidths.
These histograms can be used to estimate the standard error of
the LZ estimates as a function of the signal bandwidth. Note
that as the signal bandwidth increases the standard error of the
LZ metric decreases. This result also demonstrates that the LZ
complexity is the same for stochastic signals with different dis-
tributions (i.e., Gaussian versus Uniform) as long as they have
the same bandwidth. Note that for processes with full bandwidth
such as Gaussian white noise, or uniform white noise, the LZ
measure of complexity is approximately equal to 1. The LZ cor-
responding to colored noise with bandwidth is
approximately 0.8, and the LZ corresponding to colored noise
with bandwidth is approximately 0.5. It is sur-
prising that LZ can be used to characterize the bandwidth of a
stochastic process, specifically considering that LZ is applied
to a binary sequence generated from the original signal using a
simple threshold.

The results of our study show that LZ is a metric that quanti-
fies primarily the signal bandwidth and bandwidth of the signal
harmonics that compose quasi-periodic signals. Consequently,
LZ is correlated with second-order statistical metrics such as au-
tocorrelation and power-spectral density. The fact that LZ quan-
tifies primarily the signal bandwidth and bandwidth of the signal
harmonics is relevant in biomedical signal analysis, since phys-
iologic signals can often be modeled either as a quasi-periodic
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signal, a colored noise signal, or a combination of the two. In
the context of biosignal analysis, LZ measures derived from
quasi-periodic physiologic signals should be interpreted as a
harmonic variability metric. For instance, in the case of pressure
signals such as ABP, ICP, and SpO2, LZ is affected primarily by
the heart rate and the respiratory variability.

Fig. 4 shows four examples where LZ was calculated on ICP
signals using a moving window of 10 s with 90% overlap. The
ICP signal was highpass filtered with a cutoff frequency of
0.5 Hz to eliminate the mean (i.e., trend) prior to the computa-
tion of LZ. Note the LZ of ICP decreased as subjects progressed
from a stable state of normal ICP to a state of acutely elevated
ICP. This result provides further evidence to indicate that
decreased complexity of ICP coincides with episodes of ICH
in TBI. These results are consistent with the results of our
previously published study involving the analysis of ICP during
ICH using [40], [42]. Based on our simulation studies
involving LZ, in the case of pressure signals such as ICP, ABP,
and SpO2, the LZ measure of complexity can be interpreted as
a metric that quantifies the bandwidth of the signal harmonics.
Thus, decreases in LZ complexity during ICH correspond to a
decrease in the stochastic variability of the cardiac component,
or a decrease in HRV. Additionally, based on the simulation
study we conclude that values of LZ in pressure signals typi-
cally range from 0.05 to 0.3 which is consistent with the results
obtained in this example. A LZ value close to 1 corresponds
to a signal with full bandwidth (i.e., an uncorrelated stochastic
process). Values of LZ around 0.05 correspond to periodic
signals, and LZ values around 0.2 correspond to quasi-periodic
signals with variable harmonics such as pressure signals.

V. CONCLUSION

In this paper, we studied the LZ measure of complexity and its
interpretability in terms of classical signal processing concepts
such as frequency, number of harmonics, frequency variability
of signal harmonics, and signal bandwidth. Our results indi-
cate that LZ is particularly useful as a scalar metric to estimate
the bandwidth of random processes. Additionally, the LZ metric
can be used to characterize the bandwidth of the harmonics in
quasi-periodic signals. In the context of biosignal analysis, this
result indicates that LZ measures derived from quasi-periodic
physiologic signals should be interpreted as a harmonic vari-
ability metric.

This type of study is critical for the proper use and correct in-
terpretation of the LZ metric in the context of biomedical signal
analysis. Similar studies must also be carried out and published
to aid the interpretability of some of the other nonlinear metrics
currently used for biosignal analysis.
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