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Abstract—Beat detection algorithms have many clinical applica-
tions including pulse oximetry, cardiac arrhythmia detection, and
cardiac output monitoring. Most of these algorithms have been de-
veloped by medical device companies and are proprietary. Thus,
researchers who wish to investigate pulse contour analysis must
rely on manual annotations or develop their own algorithms. We
designed an automatic detection algorithm for pressure signals that
locates the first peak following each heart beat. This is called the
percussion peak in intracranial pressure (ICP) signals and the sys-
tolic peak in arterial blood pressure (ABP) and pulse oximetry
(SpO,) signals. The algorithm incorporates a filter bank with
variable cutoff frequencies, spectral estimates of the heart rate,
rank-order nonlinear filters, and decision logic. We prospectively
measured the performance of the algorithm compared to expert
annotations of ICP, ABP, and SpO., signals acquired from pedi-
atric intensive care unit patients. The algorithm achieved a sensi-
tivity of 99.36% and positive predictivity of 98.43% on a dataset
consisting of 42,539 beats.

Index Terms—Arterial blood pressure (ABP), component detec-
tion, intracranial pressure (ICP), pressure beat detection, pulse
contour analysis, pulse oximetry (SpO,,).

1. INTRODUCTION

UTOMATIC beat detection algorithms are essential for

many types of biomedical signal analysis and patient
monitoring. This type of analysis is most often applied to
the electrocardiogram (ECG) signal in which one or more
of its components is detected automatically. Although many
detection algorithms have been developed for ECG signals
[1], there are only a few publications that describe algorithms
to detect features in pressure signals [2]-[5]. Since pressure
detection algorithms are necessary for most types of pulse
oximeters and devices that monitor cardiac output, most of these
algorithms have been developed by medical device companies
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and are proprietary. This forces researchers to either manually
annotate short segments or implement their own semi-automatic
algorithms that lack the performance, generality, and robustness
of modern detection algorithms for ECG signals [6]. Most of
these semi-automatic algorithms for pressure signals have not
been rigorously validated or published.

We describe an automatic detection algorithm that identifies
the time-location of the percussion component in intracranial
pressure (ICP) and the systolic peak in ABP and SpO, sig-
nals. The algorithm is designed for subjects without significant
cardiac dysrhythmias. In Sections I-A-I-D, we describe the
clinical relevance of pressure beat detection algorithms, give
an overview of detection algorithms and describe the beat com-
ponents common to pressure signals. Section II describes the
detection algorithm in detail, including pseudocode to imple-
ment the different modules. Section III describes the validation
database, benchmark parameters, and the performance criteria.
Section IV reports the results of the performance assessment,
and Section V discusses the algorithm’s performance, limita-
tions, and computational efficiency.

A. Clinical Significance

The unavailability of robust detection algorithms for pres-
sure signals has, at least partially, prevented researchers from
fully conducting beat-by-beat analysis. Current methods of ICP
signal analysis are primarily based on time- or frequency-do-
main metrics such as mean, standard deviation, and spectral
power at the heart rate frequency [7]. Few investigators have
analyzed variations in the beat-level morphology of the pres-
sure signals because detection algorithms that can automatically
identify each of the beat components are generally unavailable.

Many researchers manually annotate desired components of
physiologic pressure signals because detection algorithms for
these signals are not widely available. This approach is labor-
intensive, subjective, expensive, and can only be used on short
signal segments.

There are numerous current and potential applications for
pressure beat detection algorithms. Many pulse oximeters per-
form beat detection as part of the signal processing necessary
to estimate oxygen saturation, but these algorithms are pro-
prietary and cannot be used in other applications. Systolic
peak detection is necessary for some measures of baroreflex
sensitivity [8]-[10]. Identification of the pressure components
is necessary for some methods that assess the interaction be-
tween respiration and beat-by-beat ventricular parameters and
the modulation effects of respiration on left ventricular size
and stroke volume [11]. Detection is a necessary task when
analyzing arterial compliance and the pressure pulse contour
[12]. Beat-to-beat morphology analysis of ICP also requires
robust automatic detection.
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Fig. 1. Common architecture of detection algorithms. A preprocessing stage
emphasizes the desired components and a decision stage performs the actual
component detection.

B. Overview of Beat Detection Algorithms

Most physiologic signal detection algorithms can be divided
into two stages. As shown in Fig. 1, a preprocessing stage
emphasizes the desired components in order to maximize the
signal-to-noise ratio (SNR) and a decision stage decides if an
incoming peak is a true component based on a user-specified
threshold. This architecture has been employed in most ECG
detection algorithms. The preprocessing stage traditionally
relies on signal derivatives and digital filters [13]-[21]. Recent
algorithms use wavelets and filter banks for preprocessing [22],
[23].

C. Pressure Pulse Morphology

The pulse morphology of ABP and SpO, signals is well
known and consists of a systolic peak, dichrotic notch, and
dichrotic peak [24]. ICP has a similar pulse morphology, but
often has a third peak. The three peaks common to ICP signals
are the percussion (Py), tidal (P ), and dichrotic ( Ps3) peaks. In
this paper, we refer to the percussion (ICP) and systolic (ABP
and SpO,) peaks as P;. The valley between P» and Ps3 in ICP
signals is termed the dichrotic notch, and corresponds to the
dichrotic notch in arterial blood pressure. The P, component
is a sharp peak, with fairly constant amplitude. In low-pressure
ICP signals, the P, component has the highest amplitude.
The P> component is more variable and is not always present
in low-pressure ICP signals. Fig. 2 shows an example of a
low-pressure ICP signal and its components. In high-pressure
ICP signals, the P> component is always present and usually
has the highest amplitude. Fig. 3 shows an example of a
high-pressure ICP signal. The physiology underlying the ICP
pulse morphology and its components is reviewed in [25].

D. Differences Between ECG and Pressure Signals

Pressure signals have a different time-domain morphology
and spectral density than ECG signals. Since most of the ECG
signal power is in the 10-25 Hz range, almost all QRS detection
algorithms use a bandpass filter with these cutoff frequencies
in the preprocessing stage to reduce out-of-band noise. These
algorithms combine the filter operation with another transfor-
mation, such as the signal derivative or the dyadic wavelet
transform, to exploit the large slope and high frequency content
of the QRS complex. This transformation generates a feature
signal in which QRS complexes can be detected by a simple
threshold.

Since pressure signals are more sinusoidal and less impulsive
than ECG signals, most of the signal power is in a lower fre-
quency range that includes the fundamental frequency, typically
from 0.7-3.5 Hz in humans. Thus, preprocessing and decision
logic that rely on the impulsive shape of the QRS complex to
improve detection accuracy are inappropriate for pressure sig-
nals and can reduce accuracy.
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Fig. 2. Example of an ICP pulse showing the percussion peak (P, ), dichrotic
peak (Ps), and dichrotic notch in a low-pressure ICP signal. Note that the
tidal peak (P, ) is absent in this case, and the (P; ) component has the highest
amplitude.
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Fig. 3. Example of an ICP pulse showing the percussion peak (P ), tidal

peak (P»), and dichrotic peak (Ps) in a high-pressure ICP signal. Note that
the tidal peak (P,) has the highest amplitude in this case, and the dichrotic
notch is absent. These are characteristic features of a high-pressure ICP pulse
morphology.

II. ALGORITHM DESCRIPTION & THEORY
A. Algorithm Overview

Fig. 4 shows a block diagram of our detection algorithm.
The pressure signal is preprocessed by three bandpass elliptic
filters with different cutoff frequencies. The output of the first
bandpass filter is used to estimate the heart rate based on the
estimated power spectral density (PSD). The estimated heart
rate is then used to calculate the cutoff frequencies of the other
two filters. Peak detection and decision logic are based on
rank-order (percentile-based) nonlinear filters, that incorporate
relative amplitude and slope information to coarsely estimate
the percussion and systolic peak components (P;). A nearest
neighbor algorithm combines information extracted from the
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Fig. 4. Block diagram showing the architecture and individual stages of the new detection algorithm for peak component detection in pressure signals.
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Fig.5. Example illustrating the output of some of the stages performed by the
detector during peak component detection in pressure signals.

relative amplitude and slope. Finally, the interbeat-interval
stage uses this classification together with the estimated heart
rate to make the final classification and detection of signal
components. Since detection is made on the filtered signal,
a second nearest neighbor algorithm finds the peaks in the
raw signal that are closest to the detected components. Fig. 5
shows an example illustrating the output of some of the stages
performed by the detector during peak component detection.
Table I lists the pseudocode for this algorithm.

B. Maxima Detection

Peak detection is performed at several stages in the algorithm.
It is first used to detect all peaks in the raw signal prior to any
preprocessing. Peak detection is also employed on each data
partition of the filtered signal to find the relative amplitudes of
the P, component candidates and on the inflection points. The
pseudocode for this function is shown in Table VI.

TABLE 1
ALGORITHM PSEUDOCODE

Algorithm p = PressureDetector

Inputs

x := Pressure signal.

f1 = Upper bound for the heart rate (optional).

fn = Lower bound for the heart rate (optional).

Outputs

p := Detected peaks (samples).

Begin

pz = DetectMaxima(z,0). Locate maxima in zx.
for j=1 to length(x), step size = w,
y1 := Bandpass filter z: 0.5 f; < fp <3 fa.
h := EstimateHeartRate(y ).
y2 := Bandpass filter x: 0.5 f; < f, < 2.5 median(h).
y4 := Estimate derivative of ys.
p2 := DetectectMaxima(x,90). Peaks > 90th prctile.
y3 := Bandpass filter : 0.5 f; < fp < 10 median(h).
ps := DetectectMaxima(z,60). Peaks > 60th prctile.
for k = 1 to length(po),
p4 := Find the closest p3 that follows ps.
end.
end.
p := IBICorrect(p4). Correct FN and FP.
End.

C. Preprocessing Stages

The preprocessing stage consists of three bandpass filters.
The first filter removes the trend and eliminates high frequency
noise. The resulting signal is used to estimate the heart rate
which, in turn, is used to determine the cutoff frequency of the
other two bandpass filters. The second filter further attenuates
high frequency components and passes only frequencies that
are less than 2.5 times the heart rate. The output of this filter
only contains one cycle per heart contraction and eliminates
enough high frequency power to ensure the signal derivative is
not dominated by high frequency noise. The third bandpass filter
detrends the signal by eliminating frequencies below half the
minimum expected heart rate and slightly smoothes the signal
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with an upper cutoff frequency equal to 10 times the estimated
heart rate.

D. Spectral Heart Rate Estimation

In this stage, the pressure signal is partitioned and the power
spectral density (PSD), p(w), of each segment is estimated. For
the results reported here, we used the Blackman-Tukey method
of spectral estimation. In general, any of the standard methods
of spectral estimation could be used. The algorithm uses a har-
monic PSD technique that combines n spectral components ac-
cording to (1)

n
h(w) = Zmin(aﬁ(w},ﬁ(kw)) (1
k=1

where « ensures that the power of the harmonics added to h(w)
does not exceed the power at the fundamental by more than
a factor of . For our results we used a = 2 and n = 11.
Table VII list the pseudocode for this function. The harmonic
PSD technique combines the power of the fundamental and har-
monic components. This technique has two main benefits: 1) it
is less sensitive to signal morphology than traditional PSD es-
timates because it accounts for variations in the power distri-
bution among harmonic frequencies, and 2) it achieves better
frequency resolution of the lower harmonics by leveraging the
relatively better resolution at the harmonic frequencies [26].

E. Peak Detection and Decision Logic

The detector uses nonlinear filters based on ranks for peak
detection and decision logic. After preprocessing, a rank filter
detects the peaks in each signal partition above the 60th per-
centile using a running window of 10 s. Since the signal has
been detrended and smoothed, most of these peaks correspond
to the P; signal components. In the case of high-pressure ICP
signals, P, components are usually misclassified as P; at this
stage. Another rank filter applied to the derivative signal detects
all maxima above the 90th percentile. These peaks correspond
to the points of maximum slope, the signal inflection points.

This decision logic calculates the interbeat intervals of the
detected candidate components. Whenever the detector has
missed a component (false negative), the interbeat interval has
an impulse which exceeds 1.75 the estimated heart rate. In
the cases where the detector has over-detected a component
(false positive), the impulse is “negative” showing an interbeat
interval (IBI) less than 0.75 the estimated heart rate. Since
missed and over-detected components create impulses in the
interbeat series, this stage uses median-based filters to remove
this impulsive noise. These detection errors can be easily located
by applying a simple set of thresholds to the residual signal,
i.e., the difference between the IBI series and the filter output.

F. Nearest Neighbor Decision Logic

This stage combines slope and beat amplitude information
to decide whether a peak in the smoothed signal is a valid P;.
These two metrics are combined by using a simple nearest
neighbor algorithm. The inputs to this stage are two arrays con-
taining the time location of inflection points (slope maxima),
and the candidate peak components obtained using the rank
filter. The nearest neighbor algorithm locates each candidate
component that immediately follows each inflection point. This
selects the peaks that meet the relative amplitude requirement
and that are immediately preceded by a large slope, which
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eliminates P, components with higher amplitude than P; in
high-pressure waves. In the case of low-frequency waves, P;
has usually the highest amplitude component, but the amplitude
of P3 components may be above the 60th percentile threshold.
These are also eliminated in this stage.

G. IBI Classification Logic

After the candidate peaks have passed the relative amplitude
and slope criteria in the previous stage, the final classification
is performed based on the interbeat-intervals (IBI) of the time
series containing the candidate peaks. Assuming subjects do
not have significant arrhythmias, the number of false positives
and false negatives can be reduced by imposing time constrains
on the IBI series. As mentioned earlier, whenever the detector
has missed a peak, the interbeat interval has an impulse which
exceeds twice the estimated heart rate. In the cases where the
detector has over-detected, the impulse is in the opposite direc-
tion and is less than half the estimated heart rate.

This stage calculates the first difference, x(n) — z(n — 1),
of the peak-to-peak interval series. It then searches the time
series for instances where the interbeat distance is less than
0.75 the median IBI. This is considered an over-detection, and
x(n) is removed from the candidate time series. This stage then
searches for cases were the IBI is greater than 1.75 the median
IBI, which are considered missed peaks. To correct this the al-
gorithm searches the initial maxima time series, obtained before
preprocessing and adds the component that minimizes the in-
terbeat variability. This process is repeated until all the candi-
date components fall within the expected range or the maximum
number of allowed corrections is reached.

Finally, two rank-order filters at the 90th and 10th percentile
are applied to the IBI series in order to detect the locations of
possible misdetections and over detections that were within the
accepted heart rate limits.

III. METHODS
A. Validation Database and Manual Annotation

Several standard databases are available for the evaluation of
QRS detection algorithms. These include the MIT-BIH, AHA,
and CSE databases [27]. Presently, there are no benchmark
databases available to assess the performance of pressure
detection algorithms on ICP, ABP, or POX. There are two
free databases of blood pressure waveforms: Physionet and
Eurobavar but neither of these has manually annotated pressure
components.

We assessed the performance of our algorithm on ICP, ABP,
and SpQ, signals acquired from the Pediatric Intensive Care
Unit (PICU) at Doernbecher Children’s Hospital, Oregon
Health & Science University. The signals were acquired by a
data acquisition system in the Complex Systems Laboratory
(CSL) and are part of the CSL database. The patient population
for this study was limited to subjects admitted for traumatic
brain injury, sepsis, and cardiac conditions. The sampling rate
was 125 Hz and the resolution was +0.2 mmHg (8 bits, 256
levels). Although this sampling rate is not sufficient for some
types of cardiac arrhythmia analysis, it is adequate for pressure
pulse contour analysis and the other applications listed earlier.
A total of 42539 beats were selected using a random number
generator from a population of 210 patients (60 TBI, 60 Sepsis,
and 90 cardiac). Two patients from each group were randomly
selected. A 60 minute record was then randomly chosen from
the entire recording available for each patient.
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TABLE 11
SENSITIVITY AND POSITIVE PREDICTIVITY OF THE DETECTION ALGORITHM
FOR ICP, ABP, AND ECG SIGNALS. THE TABLE SHOWS THE SE AND + P
RESULTS FOR ACCEPTANCE INTERVALS OF 8.0, 16.0, 24.0, AND 48 MS. THESE
RESULTS USED THE EXPERT MANUAL ANNOTATIONS (DT) ON 42 539 BEATS
RANDOMLY SELECTED FROM A PEDIATRIC INTENSIVE CARE UNIT PATIENT
POPULATION. THE SEGMENTS INCLUDED REGIONS OF SEVERE ARTIFACT

Interval(ms) 8.0 16.0 24.0 48.0
ICP Se 90.62 98.23 99.17 99.30
ICP +P 89.14 96.55 97.47 97.60
ABP Se 99.32 99.51 99.52 99.53
ABP +P 99.14 99.33 99.34 99.34
SpO, Se 83.26 96.45 98.85 99.27
SpO, +P 82.36 9554 97.93 98.35

TABLE III

ALGORITHM’S SENSITIVITY AND POSITIVE PREDICTIVITY VALIDATED AGAINST
TwoO EXPERTS MANUAL ANNOTATIONS OF 2300 BEATS OF RANDOMLY
SELECTED ICP SIGNALS FOR ACCEPTANCE INTERVALS (AI) OF 16.0 AND
24.0 MS. THE TABLE SHOWS THE ALGORITHM’S PERFORMANCE (AD)
AGAINST THE TWO EXPERTS (DT AND JM), AND THE CONSISTENCY
OF THE EXPERTS BETWEEN THEMSELVES

ICP Al Se +P  FN FP
AD-DT | 16.0 9945 9945 12 12
AD-JM | 16.0 9935 9935 15 15
DT-JM | 16.0 99.57 1000 10 O
AD-DT | 240 98.84 98.84 27 3
AD-JM | 240 9935 9935 15 15
DT-]M | 24.0 100.0 1000 O 0

One expert performed manual annotations for all the six
records. Each record was divided into nonoverlapping seg-
ments of 1 minute duration. The expert visually classified each
segment as “normal”, “corrupted”, or “absent.” A “normal”
segment was defined as a segment in which the noise corrupting
the signal was not “abnormal,” in the sense that the corrupting
noise is typically present for the specific waveform in a critical
care environment. Examples of this type of noise are baseline
drift, amplitude modulation with respiration, power-line inter-
ference, and morphology changes. A “corrupted” segment was
defined as a segment in which the signal contains substantial
artifact that prevents standard analysis methods from being
effective. Examples include device saturation (clipping) and
external perturbation of the sensor (catheter movement by nurse
of patient). Segments in which the signal was lost (constant)
for more than 10 s were classified as “absent.” Instructions for
classifying segments and examples are available in [28].

Once the segments were classified, the expert manually la-
beled every beat in all six records (42,539 beats). A second ex-
pert manually annotated 7128 beats of the normal and corrupted
segments.

B. Benchmark Parameters

Following the guidelines proposed by the Association for
the Advancement of Medical Instrumentation (AAMI), two
benchmark parameters were used to assess the algorithms per-
formance: sensitivity and positive predictivity [29]. Sensitivity
and positive predictivity are defined as

TP

=T N @
TP
P=———
TPy P ®

where T'P is the number of true positives, F'/N the number
of false negatives, and F'P the number of false positives. The
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TABLE IV
ALGORITHM’S SENSITIVITY AND POSITIVE PREDICTIVITY VALIDATED AGAINST
TwO EXPERTS MANUAL ANNOTATIONS OF 2179 BEATS OF RANDOMLY
SELECTED ABP SIGNALS FOR ACCEPTANCE INTERVALS (AI) OF 16.0 AND
24.0 MS. THE TABLE SHOWS THE ALGORITHM’S PERFORMANCE (AD)
AGAINST THE TWO EXPERTS (DT AND JM), AND THE CONSISTENCY
OF THE EXPERTS BETWEEN THEMSELVES

ABP Al Se +P  FN FP
AD-DT | 16.0 100.0 1000 O 0
AD-]M | 16.0 100.0 100.0 O 0
DT-JIM | 16.0 100.0 1000 O 0
AD-DT | 240 100.0 1000 O 0
AD-JM | 240 100.0 1000 O 0
DT-JM | 240 100.0 1000 O 0

TABLE V

ALGORITHM’S SENSITIVITY AND POSITIVE PREDICTIVITY VALIDATED AGAINST
TwO EXPERTS MANUAL ANNOTATIONS OF 2649 BEATS OF RANDOMLY
SELECTED SpQ, SIGNALS FOR ACCEPTANCE INTERVALS (AI) OF 16.0 AND
24.0 MS. THE TABLE SHOWS THE ALGORITHM’S PERFORMANCE (AD)
AGAINST THE TWO EXPERTS (DT AND JM), AND THE CONSISTENCY
OF THE EXPERTS BETWEEN THEMSELVES

SpO, Al Se +P FN FP
AD-DT | 16.0 9997 99.59 1 10
AD-JM | 16.0 99.87 99.68 3
DT-JM | 16.0 99.81 1000 5 0
AD-DT | 240 9997 9959 1 10
AD-JM | 240 9994 99.75 1 6
DT-JM | 240 100.0 1000 O 0

sensitivity Se indicates the percentage of true beats that were
correctly detected by the algorithm. The + P indicates the per-
centage of beat detections which were labeled as such by the
expert.

C. Algorithm Assessment

The algorithm was validated prospectively against expert an-
notated detections generated by two different experts on ICP,
ABP, and SpO, signals. The performance of the algorithm was
first assessed on the randomly chosen segments without taking
into consideration whether they contained portions of signifi-
cant artifact. After an expert manually classified each minute
as normal, corrupted, or absent, the algorithm performance was
assessed using each experts’ manual annotations as the “true”
peaks on the normal and corrupted segments. The algorithm was
developed using pressure signals from different patients than
those used for performance assessment. The assessment was
measured only once without any parameter tuning.

IV. RESULTS

Table II reports the algorithm’s sensitivity and positive pre-
dictivity for the different pressure signals and acceptance inter-
vals of 8.0, 16.0, 24.0, and 48.0 ms. These are based on one
expert’s manual annotations for all 42 539 beats including seg-
ments clasified as normal, corrupted, and absent. Tables ITII-V
report the algorithm’s sensitivity and positive predictivity on
ICP, ABP, and SpO, signals, respectively. These tables show the
algorithm’s performance (AD) compared with two different ex-
perts (DT & JM) on segments classified as normal or corrupted.
The inter-expert agreement is also reported with DT used as the
“true” peaks. The algorithm’s average sensitivity on the 42 539
beats is 99.36%, (99.30 + 99.53 + 99.27)/3; with a 98.43%
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experts and the algorithm were in perfect agreement.

Illustrative example showing an ICP signal and the percussion peaks (P;) identified by the two experts and the detection algorithm. In this case both
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Ilustrative example showing an ICP signal and the percussion peaks (P;) identified by the two experts and the detection algorithm. Again both experts

and the algorithm were in perfect agreement despite the changing morphology and the different character than the signal shown in Fig. 6.

(99.60 4+ 99.34 4+ 99.35)/3, positive predictivity for an accep-
tance interval of 16 ms (£2 samples).

V. DISCUSSION
A. Results

The results show that the algorithm is nearly as accurate as
the experts are with one-another. Figs. 6 and 7 show examples
of ICP percussion peaks. Note that the signal morphology in
Fig. 7 is considerably different from Fig. 6. Fig. 8 shows some
examples when the algorithm detected different peaks than the
experts in a SpO, signal. Note that this segment is corrupted by
clipping artifact and the algorithm continued to identify peaks
(over detection). When clipping occurs, the algorithm tries to in-
terpolate and perform component detection trying to minimize
the interbeat interval variability. Experts did not try to interpo-
late in segments where the signal was absent due to device sat-
uration. This reduces the algorithm’s reported sensitivity and
positive predictivity. Fig. 8 also shows a missed peak after the
clipped region. In general, regions where artifact occurs have a
slight effect on normal beats that are close. This occurs because
the artifacts can affect the rank-filters’ baseline and, therefore,
the estimated relative amplitude and estimated slope.

Since data was sampled at 125 Hz and there were several
regions with clipping, we chose an acceptance interval of 16 ms
(£2 samples). We expect that similar or better performance
would be obtained on signals sampled at a higher rate.

B. Algorithm Limitations and Computational Efficiency

Most stages are computationally efficient enough to im-
plement in a nearly real-time block processing architecture.
However, the IBI-based decision logic stage eliminates all the
candidate components which do not meet timing requirements
and adds components that minimize the IBI variability. This
stage is computationally inefficient because it requires several
searching and sorting operations. This is exacerbated by the
repeated passes through this step until no further corrections
are made. If the number of allowed corrections is not limited,
the algorithm may continue this indefinitely. For the results
reported here we limited the number of corrections to 5 times
the initial number of false detections.

C. Validation Databases

Although there are several standard databases available for
the evaluation of QRS detection algorithms, there are no bench-
mark databases presently available to assess the performance of
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Example showing a SpO,, signal and the systolic peak (SBP) identified by the two experts and the detection algorithm. In this case the experts and

algorithm labeled different peaks in the regions of artifact. Clearly Expert-1 (DT) made the correct choice and Expert-2 (JM) needs more training.

TABLE VI
FUNCTION PSEUDOCODE: DETECTMAXIMA

Function p = DetectMaxima
Inputs
x := Input signal.
t, = Percentile threshold.
Outputs
m := Detected peaks above t,.(samples).
Begin
lg := Number of Samples of x.
m := Find the indexes of x such that: ;1 <k > Tpt1
my := Find z(m) such that z(m) > ¢, percentile.
End.

TABLE VII
FUNCTION PSEUDOCODE: ESTIMATEHEARTRATE

Function p = EstimateHeartRate
Inputs
z := Input signal.
w := Window length (samples).
Outputs
h := Estimated heart rate (1 estimate per w).
Begin
Initialize array h,.
for k = 1 to length(x), step size w,
if (k+w <length(z) —w —1),
zs == x(k to k+w—1).
[p, f] := Estimate PSD in x5 (Blackman-Tukey).
[ph, fr] := HarmonicPSD(p,f).
m := Find the frequency where the PSD is maximum.
h, := Add the heart rate estimate to the hr array.
else
zs := x(k to length(x)).
[p, f] := Estimate PSD in z (Blackman-Tukey).
[ph, fr] := HarmonicPSD(p,f).
m := Find the frequency where the PSD is maximum.
h, := Add the heart rate estimate to the hr array.
end.
End.

pressure detection algorithms. Validation databases with man-
ually annotated beats by human experts are needed in order to
provide reproducible and comparable performance assessment
of pressure detection algorithms.

Our validation dataset is publicly available at http://
bsp.pdx.edu to provide other developers annotated exam-
ples that can be used to validate their beat detection algorithms.
Nonetheless, we caution developers and users about the risk
of validation databases. If developers use these datasets for
development, the performance is favorably biased by the tuning
and algorithm design that occurs during development. These
algorithms may have worse performance when applied prospec-
tively to new datasets. Although validation databases contain
large number of annotated peaks, detection algorithms can still
be favorably tuned to the common cardiac physiology of the
patient population, which is often a narrow subgroup that has
been targeted for their common pathologies. Ideally, validation
should be performed prospectively by a third party on data
that is unavailable to developers. Some progress toward this
higher standard of performance has been achieved through the
Computers and Cardiology challenges. Independent third-party
validation of algorithms on proprietary data with standardized
performance measures would significantly advance the quality
of detection algorithms as a whole.

VI. CONCLUSION

We described a new automatic beat detection algorithm that
can be used to detect the percussion component in ICP signals
and the systolic peak in ABP and SpQO, signals. Although there
is a substantial body of literature describing QRS detection al-
gorithms, there are almost no published descriptions or assess-
ments of pressure detection algorithms. These algorithms are
needed needed for many applications and research.

Our algorithm consists of several stages. It relies on the esti-
mated heart rate to choose the cutoff frequencies used by the pre-
processing bandpass filters and to aid the discrimination of false
negatives and false positives on the interbeat-interval decision
logic stage. It uses three bandpass filters to eliminate drift and at-
tenuate high frequency noise. It uses nonlinear rank order filters
for peak detection and decision logic. The algorithm was vali-
dated prospectively (validation dataset was not available during
algorithm development). The algorithm was run only once on
the dataset and achieved a sensitivity of 99.36% and a positive
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TABLE VIII
FUNCTION PSEUDOCODE: IBICORRECT

Function p = IBICorrect
Inputs
p = Location of detected peaks.
m := All the peaks in the signal before preprocessing.
h, := Heart rate estimate using PSD.
Outputs
pc := Detected peaks after IBI correction.
Begin
Nearest neighbor and IBI based corrections:
Correct peaks’ location error due to preprocessing.
for k=1 to length(p),
pc = Find m closest to p.
end.
Correct False Negatives (FN) and False Positives(FP)
d := Interbeat intervals: pp+1 — Pn.
fn = Find indexes of d where d > 1.75 h,..
ey := Estimated number of peaks based on h,..
while f,, # 0 and count > ey,
for k = 1 to length(f,).
xs = Signal segment from m(k) to p(m(k) + 1).
pc := Perform FN correction on signal segment.
end.
Correct False Positives (FP).
d := Interbeat intervals: p,4+1 — pn.-
fp := Find indexes of d where d < 0.75 h,.
for k = 1 to length(f}).
pc := Take the FP out of the p. array.
end.
d := Interbeat intervals after correction.
Yoo := Filter d using Rank filter: ¢, = 90"
y10 := Filter d using Rank filter:t, = 10",
fn = Find indexes of d where d > yqp.
fp = Find indexes of d where d < yi0.
Pc := Run detector around f,, and f, and correct.
if (number of p. equals ef) or (count > maxcount).
stop correction.
end.
end.
End.

predictivity of 99.43% when compared with expert manual an-
notations of ICP, ABP, and SpO,, signals from the CSL Database
(OHSU).

We also described a validation dataset and the CSL Database
of the Doernbecher Children’s Hospital (Oregon Health & Sci-
ence University). This validation dataset is publicly available as
a standard database for algorithm validation.

APPENDIX

The following Tables provide the pseudocode of the functions
used by pressure detector algorithm.
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