
ORIGINAL ARTICLE

A novel method for nonstationary power spectral density
estimation of cardiovascular pressure signals based on a Kalman
filter with variable number of measurements

Z. G. Zhang Æ K. M. Tsui Æ S. C. Chan Æ
W. Y. Lau Æ M. Aboy

Received: 25 July 2007 / Accepted: 17 April 2008 / Published online: 22 May 2008

� International Federation for Medical and Biological Engineering 2008

Abstract We present a novel parametric power spectral

density (PSD) estimation algorithm for nonstationary

signals based on a Kalman filter with variable number of

measurements (KFVNM). The nonstationary signals under

consideration are modeled as time-varying autoregressive

(AR) processes. The proposed algorithm uses a block of

measurements to estimate the time-varying AR coefficients

and obtains high-resolution PSD estimates. The intersec-

tion of confidence intervals (ICI) rule is incorporated into

the algorithm to generate a PSD with adaptive window size

from a series of PSDs with different number of measure-

ments. We report the results of a quantitative assessment

study and show an illustrative example involving the

application of the algorithm to intracranial pressure signals

(ICP) from patients with traumatic brain injury (TBI).
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1 Introduction

Power spectral density (PSD) estimation is widely used in

the analysis of biomedical signals [3, 15]. There are two

general frameworks of PSD estimation: nonparametric and

parametric methods [7, 12, 13]. Nonparametric PSD esti-

mation methods do not assume a particular model for the

signal under analysis and estimate the spectrum directly

from the data. These methods are capable of providing

unbiased estimation of the PSD if a sufficiently large

number of independent observations are available. On the

other hand, parametric methods assume the signals under

analysis can be modeled as the output of a linear system

where the input is white noise. In general, nonparametric

methods have lower computational complexity than para-

metric methods, while parametric methods can provide

higher frequency resolutions if the observations can be

adequately explained by the model and the SNR is suffi-

ciently high [10].

The above-mentioned methods assume that the signal

under analysis is stationary and its statistics such as mean,

variance, and autocorrelation do not change with time.

However, most biomedical signals, such as the cardiovas-

cular pressure signals considered in this work, contain

numerous nonstationary or transient characteristics such as

drifts, trends, abrupt changes, and beginnings and ends of

clinical events. To understand the time-frequency proper-

ties of such nonstationary signals, several time-varying

PSD estimation methods have been developed based on

nonparametric spectrum estimation such as the spectro-

gram, scalogram [11, 14], Wigner distribution and its

variants [4, 16]. Similarly, parametric spectrum estimations

algorithms have been proposed using a Kalman filter

framework [8, 9]. It has been shown that parametric PSD

estimation methods may result in higher time-frequency
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resolutions than nonparametric PSD estimations when the

SNR is high enough [8, 9]. In these methods, the non-

stationary signals are treated as a smoothness prior AR

process where the time-varying AR coefficients are

described by a stochastically perturbed difference equation

constraint model. A Kalman filter is then used to track

the AR coefficients and estimate the time-varying PSD

estimation.

Recently, a Kalman filter-based PSD estimation algo-

rithm similar to the work in [8, 9] was developed for

nonstationary signals and applied to cardiovascular pres-

sure signals such as arterial blood pressure (ABP) and

intracranial pressure (ICP) signals [1, 2]. The main limi-

tation of this method is the fact that it only employs the

current measurement to update the AR coefficients, which

results in AR coefficient estimates with large variance. To

solve this problem, a simple averaging operation over short

time windows was employed in [1]. However, the aver-

aging operation blurs the time resolution to a certain extent.

This is a fundamental problem in PSD estimation that is

referred to as the time-frequency resolution tradeoff [7]. A

measurement window of appropriate length can help to

reduce the estimation variance, while avoiding excessive

bias for nonstationary signals. A long window is preferred

for slow-varying frequency contents to reduce the estima-

tion variance. Hence, a high frequency resolution (i.e. the

ability to correctly resolve adjacent sinusoids) is obtained

at the expense of time resolution (i.e. the ability to cor-

rectly resolve adjacent events in time). On the contrary, for

fast changing frequency components, smaller windows are

desirable in order to reduce the bias error. As a result,

better time resolution is achieved for tracking the fast

varying frequency content, but the frequency resolution

will be degraded.

In this paper we propose a new parametric PSD esti-

mation algorithm based on a Kalman filter that uses a

variable number of measurements (KFVNM). The non-

stationary time series are first modeled by a time-varying

AR model with prior constraints on the AR coefficients to

model the dynamics of the AR coefficients. The smoothness

priors are imposed to the AR coefficients using a stochas-

tically perturbed model, which can be expressed in the form

of an independent white noise excited difference equation

with constraints on each AR coefficient. These difference

equations are then incorporated as a state-space represen-

tation so that the AR coefficients can be determined using

the Kalman filter framework. Unlike the conventional

Kalman filter, the proposed KFVNM algorithm employs a

block of measurements to achieve a better tradeoff between

the bias and variance of the estimated AR coefficients, and

hence a higher accuracy of the time-frequency contents. To

address the window selection problem, our proposed

method uses the intersection of confidence intervals (ICI)

rule, which has been successfully applied to the Wigner

distribution [16]. This enables the proposed KFVNM

algorithm to determine the window size adaptively. The

problem of PSD estimation involving nonstationary pres-

sure signals is used in an illustrative example to illustrate

the effectiveness of the proposed approach. Our simulation

results show that the proposed PSD estimation algorithm

provides better time-frequency resolution than conventional

Kalman filter-based algorithms for the time-varying syn-

thetic pressure signal tested. Similar observations are found

for real pressure signals.

2 Methods

2.1 Kalman filter-based PSD estimation

The Kalman filter framework of PSD estimation typically

assumes the signals under analysis are nonstationary and

can be characterized by a time-varying AR process as

follows:

yðtÞ ¼
XM

i¼1

aði; tÞyðt � iÞ þ eðtÞ; ð1Þ

where M is the order of the AR model, a(i,t) are the time-

varying AR coefficients and e(t) is assumed to be a zero

mean Gaussian white noise sequence with variance r2
e

To describe the variation of the AR coefficients, a

stochastically perturbed j-th order difference equation

constraint model is employed [8, 9]:

rjaði; tÞ ¼ dði; tÞ; i ¼ 1; . . .;M; ð2Þ

where d(i,t) is assumed to be a zero mean Gaussian white

noise sequence with variance rd,i
2 = rd

2, i = 1,…,M. For

simplicity, j is assumed to be one in this paper. The

difference equation constraint in Eq. 2 becomes a first-

order AR process with d(i,t) as the innovation vector:

aði; tÞ ¼ aði; t � 1Þ þ dði; tÞ: ð3Þ

The AR model for the nonstationary signal in Eq. 1 and the

first-order difference equation constraint model in Eq. 3

can be incorporated into the following discrete-time linear

state-space model as:

xðtÞ ¼ FðtÞxðt � 1Þ þ dðtÞ; ð4Þ
yðtÞ ¼ HðtÞxðtÞ þ eðtÞ: ð5Þ

In the above state-space model, the state vector x(t) is

defined as x(t) = [a(1,t),…,a(M,t)]T, and y(t) is the

observation or measurement. The observation matrix

and state transition matrix are respectively given as

H(t) = [y(t-1),…,y(t-M)] and F(t) = IM, where IM is an

M 9 M identity matrix. The state noise vector is d(t) =

[d(1,t),…,d(M,t)]T with covariance matrix Q(t) = rd
2IM,
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and e(t) is the measurement noise with covariance

RðtÞ ¼ r2
e :

Given the linear state-space model composed of Eqs. 4

and 5, the state vector x(t) or the AR coefficients a(i,t) can

be estimated using the Kalman filter recursion. Let x̂ðt=sÞ
(s = t-1 or t) be the estimator of x(t) given the mea-

surements up to time instant s, and P(t/s) be the

corresponding error covariance matrix of x̂ðt=sÞ: The

standard Kalman filter recursions are given by:

x̂ðt=t � 1Þ ¼ FðtÞx̂ðt � 1=t � 1Þ; ð6Þ

P t=t � 1ð Þ ¼ FðtÞP t � 1=t � 1ð ÞFTðtÞ þ QðtÞ; ð7Þ
eðtÞ ¼ yðtÞ �HðtÞx̂ t=t � 1ð Þ; ð8Þ

KðtÞ ¼ P t=t � 1ð ÞHTðtÞ
� HðtÞP t=t � 1ð ÞHTðtÞ þ RðtÞ
� ��1

; ð9Þ

x̂ t=tð Þ ¼ x̂ t=t � 1ð Þ þ KðtÞeðtÞ; ð10Þ
P t=tð Þ ¼ IM � KðtÞHðtÞ½ �P t=t � 1ð Þ: ð11Þ

Finally, using the state estimate x(t) or a(i, t), a time-

frequency representation is given by the changing PSD:

YP t; fð Þ ¼ P t; fð Þj j2; and P t; fð Þ ¼ r̂e tð Þ

1�
PM

i¼1

a i; tð Þe�j2pfi

¼ r̂e tð Þ
1� eH fð Þa tð Þ ;

ð12Þ

where e(f) = [e-j2pf,…,e-j2pfM]T, a(t) = x(t) = [a(1,t),

...,a(M,t)]T, and r̂2
e tð Þ is the observation noise variance

estimate.

For practical implementation, the observation and state

variance matrices can be estimated recursively during the

state estimation. First of all, we consider the variance

RðtÞ ¼ r2
e ðtÞ of the observation noise e(t), which can

be estimated from ê tð Þ ¼ y tð Þ �H tð Þx̂ t � 1ð Þ: Hence, the

variance of e(t) can be estimated recursively as:

r̂2
e tð Þ ¼ ker̂

2
e t � 1ð Þ þ 1� keð Þê2 tð Þ ð13Þ

where a forgetting factor ke is introduced in the recursive

update.

The state noise covariance matrix Q(t) = E[d(t)dH(t)] =

rd
2I can be estimated using a similar approach. The state

noise can be first estimated as d̂ðtÞ ¼ x̂ðtÞ � Fx̂ðt � 1Þ; then

the state noise variance r̂2
d can be calculated recursively from:

r̂2
d tð Þ ¼ kdr̂

2
d t � 1ð Þ þ 1� kdð Þvar d̂ðtÞ

h i
ð14Þ

where kd is the forgetting factor and var½d̂ðtÞ� is the vari-

ance of state noise vector d̂ tð Þ at time instant t. Note the

forgetting factors ke and kd should be slightly less than one

so that the effects of previous estimations can be gradually

neglected. The selection of optimal forgetting factor is

beyond our scope, and thus we set all these forgetting

factors to 0.95 in the simulations.

2.2 Kalman filter with variable number

of measurements-based PSD estimation

We next describe a new Kalman filter-based PSD estima-

tion algorithm with variable number of measurements

(KFVNM). This generalization is intended to achieve a

better bias-variance tradeoff in the state tracking and hence

representing a clearer time-frequency content of the signal

to be analyzed. The proposed KFVNM algorithm is moti-

vated from the work in [5, 10], where a new Kalman filter

recursion using the equivalence between the Kalman filter

and a particular least-squares (LS) regression problem was

proposed. First, we rewrite the linear state-space model in

Eqs. 4 and 5 as follows:

IM

HðtÞ

� �
xðtÞ ¼ FðtÞx̂ðt � 1Þ

yðtÞ

� �
þ EðtÞ; ð15Þ

where

EðtÞ ¼ FðtÞ xðt � 1Þ � x̂ðt � 1Þ½ � þ dðtÞ
�eðtÞ

� �

and

E EðtÞETðtÞ
� �

¼ P t=t � 1ð Þ 0

0 RðtÞ

� �
¼ SðtÞSTðtÞ:

Note that P(t/t-1) is computed using Eq. 7 and S(t) is

computed from the Cholesky decomposition of E[E(t)ET(t)].

Multiplying both sides of Eq. 15 by S-1(t), one gets:

Y tð Þ ¼ X tð Þb tð Þ þ n tð Þ; ð16Þ

where

Y tð Þ ¼ S�1 tð Þ F tð Þx̂ t � 1ð Þ
y tð Þ

� �
;

X tð Þ ¼ S�1 tð Þ IM

H tð Þ

� �
;

b(t) = x(t) and n(t) = -S-1(t)E(t). Here, the

multiplication of E(t) by S-1(t) can be treated as the

whitening of E(t), and hence the residual n(t) satisfies

E[n(t)nT(t)] = IM+1. Eq. 16 is a standard linear regression

problem with LS solution:

b̂ tð Þ ¼ x̂ t=tð Þ ¼ XT tð ÞX tð Þ
� ��1

XT tð ÞY tð Þ; ð17Þ

and the covariance matrix of estimating b̂ tð Þ is

E b tð Þ � b̂ tð Þ
� �

b tð Þ � b̂ tð Þ
� �T

� �
¼ P t=tð Þ

¼ XT tð ÞX tð Þ
� ��1

: ð18Þ
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It was shown in [5, 10] that Eqs. 16– 18 form an equivalent

Kalman filtering algorithm based on LS criterion with

b̂ðtÞ ¼ x̂ðt=tÞ and Pðt=tÞ ¼ covðb̂ðtÞÞ: As seen in Eq. 16,

the lower part of the equation is a conventional LS

estimation of x(t) from the current measurement y(t) and

the upper part is a regularization term that imposes a

smoothness constraint from the state dynamic into the LS

problem. Consequently, if fewer measurements are used to

update the state vector, the bias error is low especially

when the system state is fast varying. On the other hand, if

the state is time-invariant or slow varying, more mea-

surements are used to track the state vector and reduce the

estimation variance. As mentioned in Sect. 1, the conven-

tional Kalman filter-based PSD methods in [1, 8, 9] only

use one measurement to update the state estimate. There-

fore, these methods often have a relatively large state

estimation variance and degraded frequency resolution in

the case of slowly time-varying frequency components

where more measurements should have been used to

reduce the estimation variance.

The KFVNM is obtained as follows. Consider a block of

measurements lying in a symmetric window centered at

y(t), [y(t-L),…,y(t),…,y(t + L)], where h = 2L+1 is the

total number of measurements, or window size. Including

all these measurements in Eq. 16 for state estimation, we

get:

�YðtÞ ¼ �XðtÞbðtÞ þ �nðtÞ; ð19Þ

where

�YðtÞ ¼ �S�1ðtÞ
FðtÞx̂ðt � 1Þ

yðtÞ

� �
; �XðtÞ ¼ �S�1ðtÞ

IM

�HðtÞ

� �
;

yðtÞ ¼ ½yðt � LÞ; . . .; yðtÞ; . . .; yðt þ LÞ�T ; and

�HðtÞ ¼ ½HTðt � LÞ; . . .;HTðtÞ; . . .;HTðt þ LÞ�T :

Here, SðtÞ is obtained from the Cholesky decomposition of

P t=t � 1ð Þ 0

0 diag Rðt � LÞ; . . .;RðtÞ; . . .;Rðt þ LÞf g

� �

in the new algorithm, and it acts as a weighted matrix to let

the residual �nðtÞ satisfy E½�nðtÞ�nTðtÞ� ¼ IMþh: Similarly, the

LS solution of Eq. 19 can be obtained by:

b̂ðtÞ ¼ x̂ðt=tÞ ¼ ½�XTðtÞ�XðtÞ��1 �XTðtÞ�YðtÞ; ð20Þ

Pðt=tÞ ¼ ½�XTðtÞ�XðtÞ��1
: ð21Þ

Therefore, PSDs with different time-frequency properties

can be obtained. Using these results, the number of mea-

surements h can be varied to handle different time and

frequency variations in the target time series.

To handle the window selection problem, the intersec-

tion of confidence intervals (ICI) rule [16] is employed to

generate an adaptive PSD. Generally, an optimal local

window size should minimize the mean squared error

(MSE), which is the sum of estimated bias and variance.

The MSE can be expressed as a function of the window

size. The ICI method finds the optimal window size by

examining the confidence intervals of the estimates when

the window size in a finite window size set gradually

increases. For a small window size h, we expect that the

bias of estimation will be small and the confidence interval

will gradually decrease with increasing value of h while the

center of the interval remains more or less fixed. When h is

increased to a certain point, a large bias will result and the

center of the interval will shift significantly, while the

length of interval will be small. As a result, the confidence

interval will no longer intersect those with smaller values

of h. The ICI bandwidth selection method computes and

examines the confident intervals in order to detect this

sudden change and hence the optimal window size. More

details about the ICI rule can be found in [16] and refer-

ences therein.

Suppose that we are given a finite set of window sizes in

ascending order of magnitude:

h ¼ hk; k ¼ 1; 2; . . .;K h1\h2\. . .\hKjf g: ð22Þ

For each window size hk, we will obtain a Kalman filter-

based spectral density P t; f ; hkð Þ: The variance, Var(�), and

the bias, bias(�), of P t; f ; hkð Þ are functions of the time

window hk. Therefore, the corresponding mean square error

(MSE(�)) is given by:

MSE t; f ; hkð Þ ¼ Var P t; f ; hkð Þ½ � þ bias2 P t; f ; hkð Þ½ �: ð23Þ

Since the estimation variance is a decreasing function and

the bias is an increasing functions of the window size hk,

there exists an optimal window hopt such that two terms are

equal and hence MSE(t, f; hk) is minimized. To determine

hopt, the ICI rule examines a sequence of confidence

intervals of the estimates P t; f ; hkð Þ :

Dk ¼ Lk;Uk½ �; ð24Þ

where Lk ¼ P t; f ; hkð Þ � C � r hkð Þ; Uk ¼ P t; f ; hkð Þ þ
C � r hkð Þ; r2 hkð Þ ¼ Var P t; f ; hkð Þ½ � is the variance of the

estimate using the window length hk, and C[ 0 is a

threshold parameter of the confidence interval. According

to [6], the variance of P t; f ; hkð Þ with a window size

(number of measurements) hk can be computed

approximately as:

r2 hkð Þ ¼ Var P t; f ; hkð Þð Þ

¼ YP t; f ; hkð Þ½ �3=2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
peH fð Þr̂2

dðt; hkÞe fð Þ
r̂2

e t; hkð Þ

s

; ð25Þ

where r̂2
d t; hkð Þ and r̂2

e t; hkð Þ are respectively the estimated

variances of state noise and observation noise.
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Define the following quantities from the confidence

intervals:

�Lk ¼ max �Lk�1; Lkf g; �L0 ¼ 0 and; ð26Þ
Uk ¼ min Uk�1;Ukf g; U0 ¼ 0; ð27Þ

for k = 1, 2,…,K. The objective is to find hk such that

Uk � �Lk for the largest possible value of k. By using an

adaptive window for each time-frequency sample, a better

tradeoff between time and frequency resolutions can be

achieved for various signal components possibly with dif-

ferent time-frequency variations. Therefore, the adaptive

PSD is expected to provide clearer time-frequency contents

than that with a fixed window size.

3 Results

3.1 Analysis of synthetic pressure signal

Synthetic biomedical signal models are important tools in

biomedical signal analysis. The ability to simulate signals

with realistic characteristics enables us to develop and test

our algorithms and methodologies on synthetic signals

prior to validation on real data. Since the statistical prop-

erties and other characteristics of the synthetic data are

known, it provides the gold standard to quantitatively

evaluate the performance of different algorithms as shown

below.

Consider the following three criteria C1, C2 and C3,

which can be respectively regarded as a measure of the

bias, variance and MSE of the PSD estimate between true

and extracted representations:

C1 : C1ðtÞ ¼ N�1
XN

n¼1

fext t; nð Þ
" #

� f ðtÞ; ð28Þ

C2 : C2ðtÞ ¼ N�1
XN

n¼1

fext t; nð Þ � N�1
XN

n¼1

fext t; nð Þ
" #2

;

ð29Þ

C3 : C3 tð Þ ¼ N�1
XN

n¼1

fext t; nð Þ � f tð Þ½ �2; ð30Þ

where N is the number of independent realizations, fext(t, n)

corresponds to the extracted (or estimated) frequency at the

t-th time instant during the n-th realization, f(t) is the true

frequency at the t-th time instant. Here, fext(t, n) is deter-

mined by the peak position of the estimate. The smaller

these values, the better the estimation algorithm is. For

known test signals, the time-frequency resolution can be

measured by comparing the MSE of the estimator fext(t, n)

(extracted from the estimated PSDs) with the ground true

f(t) which is given by C3. Whereas C1 and C2 measure

respectively the bias and variance of fext(t, n).

As an illustration, we shall consider the statistical model

developed in [1] for simulating the pressure signals such as

ABP and ICP signals. In this model, the signal generated is

composed of two fundamental sinusoids, namely cardiac

and respiratory frequencies. The effects of respiration

such as pulse amplitude variation and respiratory sinus

arrhythmia are considered as amplitude and frequency

modulations of the fundamental cardiac sinusoidal signal,

respectively. More precisely, the signal model is given by:

sðtÞ ¼ Ac½1þ prðtÞ� � a cos 2pfct þ q sin 2pfrtð Þ½
þb cos 4pfct þ qb sin 2pfrt þ hð Þ� þ jr � rðtÞ;

ð31Þ

where Ac is the cardiac amplitude, p is the amplitude

modulation index, r(t) = cos(2pfrt) is the respiratory sig-

nal, fc and fr are respectively the fundamental cardiac and

respiratory frequencies, q is the frequency modulation

index, a and b are respectively the first and second cardiac

component amplitudes, h is the phase difference between

the first and second harmonics of cardiac frequency and jr

is the additive respiration amplitude. For simplicity, only

the first two harmonics in cardiac frequency are considered

in Eq. 31 because most of the power in real pressure signals

is contained in these two harmonics. The values of various

parameters used in this example are: Ac = 1, p = 0.01,

q = 0.01, a = 0.1, b = 0.09, h = 0.3p, and jr = 0.4.

The testing procedure involves the generation of

N = 100 realizations of the same random process using the

statistical model in Eq. 31. The sampling rate and the time

duration for this experimental signal are set to 12.5 Hz and

20 s, respectively. To illustrate the effectiveness of the

proposed algorithm, the synthetic signals are designed to

contain a sudden change of cardiac and respiratory fre-

quencies at the time instant around 10 seconds as shown in

Fig. 1a. The window sizes h in Eq. 22 are chosen as

h = {1, 9, 17, 33}. The synthetic signal is corrupted by a

zero mean additive white Gaussian noise with a SNR of

30 dB. The model order M is important to the accuracy

of AR coefficient estimates and the frequency resolution of

the PSD estimation. A small model order cannot discrim-

inate different frequency components. On the other hand,

when the model order is too large spurious peaks may

appear around the true frequency. According to [7], for a

noise-free signal consisted of m sinusoidal components,

a real AR(2m) model is required. In addition, the model

order should increase with the amount of additive noise. In

this experiment, the AR order is chosen as M = 7 for the

synthetic signal composed of three sinusoidal components

and small noise component.

As a comparison, four time-frequency analysis algo-

rithms were considered: 1) the Kalman filter-based PSD

Med Biol Eng Comput (2008) 46:789–797 793
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estimation algorithm with one measurement (A1), 2) the

Kalman filter-based PSD estimation algorithm with 33

measurements (A2), 3) the dual Kalman filter-based PSD

estimation algorithm plus averaging operation over ten

time samples studied in [1] (A3), 4) and the proposed

algorithm (A4). In Figs. 1b – 1e, the results of 100 inde-

pendent realizations using the four algorithms are overlaid

and each curve represents the peak position of the PSD

estimate in three frequency bands, 0–1.3, 1.3–3.3 and 3.3–

6 Hz, where the three components are supposed to lie. It

can be seen in Fig. 1b that a large window size can provide

more precise time information at the expense of poor fre-

quency representation, and vice versa in Fig. 1c. Also, the

proposed algorithm offers much less deviation from the

true values as compared with other algorithms.

Our assessment study also included a quantitative

comparison of the four methods using the C1, C2 and C3

criteria. For clarity, the frequency band is also divided

into three intervals, 0–1.3, 1.3–3.3 and 3.3–6 Hz, and the

obtained values are plotted in logarithmic scale. Note that

since the criterion C1 may be negative, we used the

absolute value for the purposes of comparison. The results

in terms of the above criteria are shown in Fig. 2 and the

average value of Ck(i) over the total number of time

samples (denoted by �Ck), k = 1, 2, 3, are summarized in

Table 1. As expected, it can be seen from Fig. 2a that the

criteria C1, C2 and C3 for the algorithm A1 are relatively

large for slowly time-varying frequency components

especially in the frequency interval 0–1.3 Hz, which is

opposite to the observations for the algorithm A2.

Moreover, Fig. 2c shows that algorithm A3 provides

insignificant improvement in criterion C3 over the algo-

rithm A1 for slowly time-varying frequency components,

and its performance during the sudden change of fre-

quency (i.e. at around time instant 10) is considerably

degraded due to the averaging operation. On the other

hand, the proposed algorithm appears to have good per-

formance in most cases. This suggests that the proposed

algorithm is capable of achieving a better performance

than conventional PSD estimation methods.

3.2 Analysis of a nonstationary ICP signal

In this section we present a representative example of the

results obtained when the proposed method was used to

Fig. 1 Performance comparison between different PSD estimation

methods for the synthetic signal: (a) true frequncy contents of the

synthetic signal (fc: cardiac frequency, fr: respiratory frequency), and

extracted frequency contents using (b) Kalman filter with one

measurement (A1), (c) Kalman filter with 33 measurements (A2),

(d) dual Kalman filter studied in [1] (A3), and (e) the proposed

algorithm (A4)

c

794 Med Biol Eng Comput (2008) 46:789–797

123



analyze cardiovascular pressure signals. For illustration

purposes we analyzed the same ICP signal used in other

PSD estimation works involving the use of the Kalman

filtering framework [1].

Fig. 3a shows the target signal recorded from a selected

patient who suffered from a period of intracranial

hypertension and was treated by a therapy involving

mechanical hyperventilation to reduce elevated ICP. As

seen from Fig. 3a, the sudden change in mean ICP is due to

the hyperventilation intervention occurred approximately

after 800 s. Previous works have shown that nonparametric

methods such as Welch’s may not be able to provide

Fig. 2 Performance comparison between (a) Kalman filter-based

PSD estimation algorithm with one measurement (A1), (b) Kalman

filter-based PSD estimation algorithm with 33 measurements (A2), (c)

dual Kalman filter-based PSD estimation algorithm plus averaging

operation over ten time samples studied in [1] (A3), and (d) the

proposed algorithm (A4). The x-axis denotes the time in second, and

the y-axis is in a logarithmic scale

Table 1 Bias ð �C1Þ; variance ð �C2Þ and mean square error ð �C3Þ of various algorithms

0–1.3 Hz 1.3–3.3 Hz 3.3–6 Hz

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

�C1 4.53 1.19 -33.3 0.24 37.9 22.6 -35.8 21.5 -6.11 -6.91 -6.03 0.32

�C2 4.93 0.03 13.2 0.34 0.82 0.13 2.41 0.86 1.31 0.23 4.02 1.13

�C3 13.1 1.54 20.3 1.38 4.59 4.25 4.19 2.51 5.41 7.84 5.42 5.17

All the values are normalized by 10-3
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sufficient time and frequency resolutions for the determi-

nation of the time instant when the hyperventilation

intervention occurred [1]. Prior to the application the PSD

estimation algorithm, the signal was decimated to 12.5 Hz

by passing through a lowpass filter and a downsampler. As

suggested in [17], this operation not only reduces the

computational complexity, but also enhances the SNR

because the noise outside the frequency of interest is

attenuated. As compared with the synthetic signal in the

previous example, the real signal has relatively larger

amplitude variation and slower rate of change of the fre-

quency components. This results in a higher AR order and

longer data windows required to track the signal changes.

The AR order is selected as M = 25 in a trial and error

manner because of unknown SNR. The window size is

chosen as h = {1, 17, 33, 65}. Figs. 3b and 3c show the

PSD estimation results obtained respectively by the algo-

rithm A1 and the proposed algorithm. It can be seen that

PSD estimated by the proposed approach exhibits less

spectral variations especially in slowly time-varying com-

ponents. Both figures also show that the cardiac component

and its harmonic are present around 2 and 4 Hz, whereas

the respiratory component is found in the frequency band

ranging from 0 to 0.5 Hz. A sudden change of frequency in

the three components can be observed at about 950 s. To

examine the change of the respiratory rate after hyper-

ventilation, in Fig. 3c we show the time-frequency

distribution of the ICP signal focusing on the time of the

hyperventilation (800 – 1200 s) and the frequency of

the respiratory component (0–1.3 Hz). Comparing with the

results in [1], the proposed algorithm offers a clearer time-

frequency contents and fewer spurious components in

the estimated PSD, due to the use of variable number of

measurements.

4 Discussion and conclusions

A new Kalman filter with variable number of measure-

ments (KFVNM) algorithm is described in this paper to

estimate the PSD of nonstationary pressure signals. By

employing the ICI rule to choose the appropriate window

size adaptively, the proposed KFVNM-based PSD esti-

mation method is expected to provide better time-

frequency resolution than conventional Kalman filter-based

methods.

To illustrate the effectiveness of the proposed KFVNM-

based PSD estimation method, it was first validated

in Sect. 3.1 quantitatively using synthetic cardiovascular

pressure signals. We compared various conventional

Kalman filter-based PSD estimation methods and assessed

their performances using the defined quantitative measures

in Eqs. 28–30. Since the characteristics of synthetic signal

are known, the time-frequency resolution can be measured

by comparing the MSE (C3) of the estimator (extracted

from the estimated PSDs) with the ground true. Whereas

C1 and C2 measure respectively the bias and variance of

Fig. 3 a Real ICP signal, b PSD estimated using the Kalman filter-

based algorithm with one measurement (A1), c PSD estimated using

the proposed Kalman filter-based algorithm, d PSD of the respiratory

component around 950 s
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the estimator. It can be seen that the proposed method

is capable of providing more accurate time-frequency

contents than conventional methods and the improved

accuracy was shown quantitatively by the criteria C1, C2

and C3.

Apart from synthetic signal, the algorithm was applied

to a representative ICP signal, which contains both tem-

poral and spectral information due to the hyperventilation

intervention. The results in Sect. 3.2 suggest that the pro-

posed method is able to achieve better tradeoff between

time and frequency resolutions and enhance higher accu-

racy of the extracted features than the conventional Kalman

filter-based PSD estimation methods. The good time-fre-

quency resolution of the proposed method would allow us

to give reasonable estimation of frequency component and

detection of important events. Therefore, time-frequency

analysis of such kind of signal using the proposed method

would provide a more complete understanding on the

changes in time and frequency characteristics. For exam-

ple, as shown in Fig. 3, we can observe how the heart rate

increased slightly and became more constant. We can also

note how the heart rate went from about 1.8 to 2 Hz (i.e.

120 beats/min) and the heart rate variability decreased

once hyperventilation was initiated.

Besides, it is also possible to apply the proposed method

to analyze time-frequency characteristics of other signals

having a similar nature (single- or multi-component sinu-

soids with reasonable amount of additive noise), because

AR processes can accurately model narrowband stochastic

signals. These include various biomedical signals and there

is a primary interest in estimating the temporal and spectral

information. To apply the proposed method for the analysis

of other kinds of signals, the AR model order should be

carefully determined according to the number of sinusoids

contained in the signals and the amount of noise.

Compared with the conventional Kalman filter-based

PSD estimation, the proposed method has higher compu-

tational complexity because it needs the calculation of a

series of Kalman filter-based PSD estimation with different

number of measurements and selection of the appropriate

number of measurements. However, for offline signal

processing, it is desired to obtain a clearer time-frequency

representation for the better understanding of the testing

signal at the expense of a relatively higher computational

complexity.
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Kalman filtering. Int J Contr 3:547–562

11. Mallat S (1998) A wavelet tour of signal processing. Academic

Press, San Diego, pp 76–87

12. Manolakis DG, Ingle VK, Kogan SM (2000) Statistical and

adaptive signal processing. McGraw-Hill, New York, pp 195–

260, 445–498

13. Proakis J, Rader C, Ling F, Nikias C, Moonen M, Proudler I

(2002) Algorithms for statistical signal processing. Prentice-Hall,

Englewood Cliffs, pp 432–503

14. Qian S (2002) Introduction to time frequency and wavelet

transforms. Prentice-Hall, Englewood Cliffs, pp 99–146

15. Rangayyan RM (2002) Biomedical signal analysis: a case-study

approach. Wiley, New York, pp 277–444
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