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Abstract: Physiological signal simulators are often used to conduct validation studies of
commercially available devices such as oscillometric non-invasive blood pressure (NIBP)
monitors. Numerous assessment studies have been conducted using simulators to validate
commercial NIBP monitors. While there are several simulators commercially available to
evaluate oscillometric NIBP devices, currently there are no simulators designed to validate
invasive pressure signal devices.

A statistical model and simulator for invasive cardiovascular pressure signals such as arterial
blood pressure and intracranial pressure are described. The model incorporates the effects of
respiration on pressure signals and can be used to generate synthetic signals with time and
frequency domain characteristics matching any desired subject population. Additionally, the
way that noise and artefacts typically present in real pressure signals should be modelled is
described. The proposed statistical model is a useful tool for validation of algorithms designed
to process or analyse biomedical pressure signals to estimate parameters of clinical interest
such as the cardiac frequency, heart rate variability, respiratory frequency, and pulse pressure
variation in the presence of noise. The model can be used to simulate signals in order to
validate commercial devices that process and analyse invasive pressure signals.

Keywords: arterial blood pressure, intracranial pressure, simulators, non-invasive blood
pressure simulators

1 INTRODUCTION

Biomedical signal models are important tools for

research, development, comparison, and validation

of algorithms that operate on physiological signals

[1]. This is because most algorithms cannot be tested

directly on data as the parameter of interest is not

directly measurable [2]. As a result of the inability to

use patient data for validation or development,

many models have been utilized. Models as simple

as adding noise to pre-recorded patient data for the

verification of bispectrum averaging in waveform

estimation [3] to those as complex as generating

synthetic binary spike trains for tremor frequency

tracking validation [4] have been extensively used in

research. In reference [5], a model was developed to

validate a stationary segmentation algorithm for

extracellular microelectrode recordings. Models of

the electromyogram (EMG) have also been proposed

for such purposes as model-based signal interpreta-

tion [6], analysis of the sources of cross-talk [7],

investigation of the contribution of amplitude and

frequency spectrum from motor units in surface

EMG [8], and exploration of the effect of limb

geometry on surface-detected muscle fibre action

potentials [9].

Additionally, models of the electroencephalogram

(EEG) and magnetoencephalogram (MEG) have been

constructed and used for electromagnetic source

analysis [10], for simulation of non-stationary EEG

signals [2], for validation of event related synch-

ronization–desynchronization estimation of alpha

waves in EEG [11], for simulation of the spontaneous

EEG [12], and as a description of the temporal

stationarity in background noise seen in MEG
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and EEG measurements [13]. Other uses of physio-

logical signal models include interpretation of the

Lempel–Ziv complexity [14], validation of a filter

algorithm that corrects ectopic beats for heart-rate

variability analysis [15], validation of spike detection

in noisy neural recordings [16], validation of an ambu-

latory QRS detector [17], and comparison of noise

sensitivity in multiple QRS detection algorithms [18].

A small sampling of other physiological signal models

can be found in references [19] to [22].

One of the most important uses for a pressure

signal model or simulator is validating commer-

cially available pressure signal measurement de-

vices. Synthetic generation of signals allows a huge

and diverse variety of data to be rapidly generated

that can be used to target and test both specific

aspects and overall robustness of measurement

devices. In many cases, accumulation of real

physiological data that represent a wide variety of

patient populations and conditions is prohibitively

costly or impossible. Simulators are currently used

in validation studies of commercially available

devices such as oscillometric non-invasive blood

pressure (NIBP) monitors. Numerous studies have

been conducted using simulators to validate oscil-

lometric NIBP monitors, to perform consistency

comparisons using synthetic signals with and with-

out artefacts [23], to look for systematic differences

between monitors [24], and to compare repeatabil-

ity and differences between monitors [25]. Several

other studies have been published comparing

oscillometric NIBP devices and reporting on com-

mercially available simulators [26–30]. While there

are currently several simulators commercially avail-

able to evaluate oscillometric NIBP devices, there

are none that can be used to validate invasive

pressure signal devices such as those that measure

arterial blood pressure (ABP) and intracranial

pressure (ICP).

Models for physiological pressure signals have also

been extensively used in research for a variety of

applications [31–35]. However, there are currently

no journal publications describing invasive cardio-

vascular pressure signal models. In this paper a

statistical model for cardiovascular pressure signals

such as ABP and ICP that incorporates the effects

of respiration on pressure signals and can be used

to generate synthetic signals with time-domain

and frequency-domain characteristics matching

any desired subject population is described. The

model can be used for development and validation

of algorithms that operate on cardiovascular pres-

sure signals and as a simulator for validating and

comparing commercially available devices used for

invasive pressure devices that measure signals such

as ICP and ABP. The effectiveness of the model is

demonstrated by comparing synthetic ICP signals

generated with the proposed model with ICP real

signals taken from pediatric patients with traumatic

brain injury.

2 MODEL DESCRIPTION

Biomedical pressure signals possess a variety of

different morphologies. The pulse morphology of the

ABP and SpO2 signals is well known and consists of a

systolic peak, dicrotic notch, and dicrotic peak. ICP

has a similar pulse morphology, but often has a third

peak. Common morphologies are demonstrated

using two ICP signals in the time-domain and a

frequency-domain example of pressure signals taken

from pediatric patients with traumatic brain injury.

In Fig. 1(a) a typical low-pressure morphology can

be seen. In this signal, the various features including

the percussion peak, dicrotic notch, and dicrotic

peak are annotated. Specific features characteristic

of a low-pressure signal include a well-defined

dichrotic notch and lower peak pressure value

compared with a high-pressure morphology as

typified in Fig. 1(b). As seen in Fig. 1(b), the dicrotic

notch is absent, the tidal peak appears, and the peak

pressure is higher. Figure 3 (given later) demon-

strates the frequency-domain characteristics com-

mon in pressure signals. The annotations highlight

the typical frequency-domain characteristics that

the proposed model will simulate.

2.1 Pressure signal model

Biomedical pressure signals can be modelled as a

sum of N harmonically related sinusoidal signals

modulated by respiration according to

x tð Þ~ 1{m tð Þrn tð Þ½ �
XN

k~1

ak tð Þcos hck
tð Þ

� �
zr tð Þzu tð Þ ð1Þ

where r(t) is the additive component of the respira-

tory signal, rn(t) is the normalized respiratory signal,

m(t) is the modulation index, ak tð Þf gN
k~1 are the

scalar multipliers for each of the harmonic signal

components, hck
tð Þ

� �N

k~1
denote the angles corre-

sponding to each of the harmonics, and u(t) denotes

coloured noise. The instantaneous cardiac frequency
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fci
is given by

dhck
tð Þ

t
~2pfci

tð Þ ð2Þ

where fci(t) can be modelled as an autoregressive

random process.

The normalized respiratory signal rn(t) can also

be modelled as a sum of P harmonically related

sinusoids, according to

rn tð Þ~
XP

k~1

cos hrk
tð Þ

� �
zv tð Þ ð3Þ

where hrk
tð Þ

� �P

k~1
denotes the angles corresponding

to the harmonics composing the respiratory signal,

and v(t) denotes coloured noise. The instantaneous

respiratory frequency fri
is given by

dhrk
tð Þ

t
~2pfri

tð Þ ð4Þ

and can also be modelled as an autoregressive

random process.

This model takes into account the frequency

variability of the cardiac and respiratory compo-

nents by modeling hck
tð Þ and hrk

tð Þ as two correlated

random processes with bandwidth bc and br respec-

tively. These bandwidths control the heart rate

variability and the respiratory rate variability.

The model that is proposed in equation (1) is a

generalization of previously published models. Note

that if only the first two harmonics of the cardiac

signal hck
tð Þ

� �2

k~1
are considered, if the respiratory

signal is assumed to have a single harmonic hrk
tð Þ,

and the modulation index m(t) is constant, i.e.

m(t)5m, the model reduces to

x tð Þ~ 1{mrn tð Þ½ �
X2

k~1

ak cos hck
tð Þ

� �
zr tð Þzu tð Þ ð5Þ

for constant scalar multipliers, i.e. ak(t)5ak. This

model can be further simplified if the heart rate

variability is not accounted for and if it is assumed

that the subject is being mechanically ventilated,

resulting in a constant respiratory frequency given by

x tð Þ~a tð Þ a1 cos 2pfctð Þza2 cos 2p2fctð Þzh½ �zu tð Þ
ð6Þ

where the cardiac frequency fc is constant, the second

harmonic has a phase shift with respect to the

fundamental cardiac component h, and the modula-

tion signal a(t) has a constant modulation index m

and constant respiratory frequency fr and is given by

a(t)512mcos(2pfrt).

2.2 Additive noise; baseline drift

The baseline drift artefact b(t – tb) is modelled as an

additive effect on the pressure signal x(t) according

to

xb tð Þ~x tð Þzb t{tbð Þ ð7Þ

Fig. 1 Time-domain example of (a) a low-pressure and (b) a high-pressure ICP signal and taken
from a pediatric patient with traumatic brain injury
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where b(t – tb) is a step function starting at time tb

and is given by

b t{tbð Þ~
0, tvtb

kb, twtb

�
ð8Þ

where tb is a continuous random variable drawn

from a uniform distribution, tb*U mtb
, s2

tb

� �
with

mean mtb
and variance s2

tb
. Analogously, kb is

modelled as a continuous random variable drawn
from a Gaussian distribution kb*fb mb, s2

b

� 	
with

user-specified mean mb and variance s2
b. This choice

of random variable allows the user to simulate both

increasing and decreasing baseline drift.

2.3 Impulse noise

Impulse noise can be caused by a variety of artefacts

such as abrupt motion artefacts. Impulse artefacts

dk(t – td) are modelled as an additive effect on the

pressure signal x(t), according to

xd tð Þ~x tð Þz
XN

k~1

dk t{tdð Þ ð9Þ

where N, the number of impulse artefacts present in

the signal, is a continuous random variable drawn

from a Gaussian distribution N*fN mN , s2
N

� 	
with

user-specified mean mN and variance s2
N , and dk(t –

td) is an impulse function starting at time tk
d,

according to

dk t{tdð Þ~
0, t=tk

d

tdze
td{e d t{tdð Þ dt~kk

d

(
ð10Þ

where tk
d is a continuous random variable drawn

from a uniform distribution tk
d*U mtk

d
, s2

tk
d

� �
with

mean mtk
d

and variance s2
tk

d

. Analogously kk
d is

modelled as a continuous random variable drawn

from a Gaussian distribution kk
d*f k

b mk
d, s2k

d

� �
with

user-specified mean mk
d and variance s2k

d .

2.4 Power line interference

Power line interference is modelled as an addit-

ive effect on the pressure signal x(t) by a multi-

harmonic sinusoidal signal p(t), according to

xp tð Þ~x tð Þzp tð Þ ð11Þ

The interference signal p(t) is given by

p tð Þ~
XP

k~0

Ak cos 2pf0ktzwkð Þ ð12Þ

where f0 corresponds to the line interference fre-

quency and P is the number of harmonics. In this

implementation, P53 and f0 are user-specified

parameters (60 Hz in the USA).

3 RESULTS AND DISCUSSION

Table 1 lists the user-specified parameters available

in the proposed model. Note that all the parameters

have a clear clinical interpretation as listed in

Table 1. With these parameters, synthetic signals

from diverse subject populations can be generated

including animals, adults, the elderly, and children.

For example, when simulating the ICP pulse mor-

phology of a critically ill child, the heart rate could be

selected near 2 Hz. Using a nominal heart rate of

1 Hz would correspond to a healthy adult. Altering

other parameters listed in Table 1 with a-priori

information about various patient populations en-

ables researchers to simulate data from other patient

populations. The proposed model is demonstrated

Table 1 Summary of user-specified parameters available in the proposed model

User-specified parameter Description of parameter

m Pulse pressure variation or modulation index
fc Heart rate (Hz)
fr Respiratory rate (Hz)
rn Pulse pressure magnitude (mmHg)
mp Mean pressure (d.c. offset)
w2 Phase of second sinusoidal signal
dk(t – td) Motion artefact due to patient movements
t Length of signal (s)
fs Sampling frequency (Hz)
p(t) Power line interference
b(t – tb) Baseline drift
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by comparing synthetic pressure signals generated

by the proposed model against real ICP from pedi-

atric patients in the time-domain. Noise-corrupted

signals are not included for brevity of presenta-

tion. A frequency-domain synthetic signal is also

presented in Fig. 2 and this was generated with the

same patient parameters as the real signal shown

in Fig 3.

Figure 4 shows examples of synthetic pressure

signals generated with the proposed model with the

objective of matching the pulse morphology of

pediatric patients with traumatic brain injury. In

these time-domain figures the dark-grey signal

corresponds to the synthetic signal and the light

grey signal represents the real pressure signals.

Figure 4(a) shows a low-pressure ICP morphology.

Note the well-defined dicrotic notch and lack of the

tidal peak typical in low-pressure ICP morphologies.

Figure 4(b) shows a high-pressure ICP morphology

characterized by the absence of the dicrotic notch

and the appearance of the tidal peak. Figure 2 is a

frequency-domain representation of a synthetic ICP

signal generated to match the frequency content of

the signal shown in Fig. 3. Note how the model

parameters can be user specified or automatically

estimated to generate ensembles of synthetic signals

Fig. 2 Frequency-domain example of a synthetic ICP signal simulating a pediatric patient with
traumatic brain injury

Fig. 3 Frequency-domain example of an ICP signal taken from a pediatric patient with trau-
matic brain injury
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with time-domain and frequency-domain character-

istics matching a wide range of patient populations

or conditions. The ability to generate these ensem-

bles is important for validation and assessment

of algorithms and commercially available devices

designed to operate on cardiovascular pressure sig-

nals.

Models for physiological pressure signals have

been used in a variety of research applications. For

instance, in reference [31] a synthetic ABP signal was

used to validate a pulse pressure variation algorithm.

The development of a Kalman filter approach to

spectral estimation in non-stationary biomedical

signals utilized both a model and a real ICP signal

for comparison and validation [32]. Other studies

have used synthetic ICP signals to validate and

compare a brain pressure monitor and intracranial

pressure transducers [33, 34]. In reference [35], an

approximate entropy interpretation study included

synthetic ICP signals with a range of characteristics

to analyse approximate entropy in the context of

biomedical signal analysis. One disadvantage to

these pressure signal models is that they are

developed within the framework of a different goal,

i.e. presenting a novel algorithm. Consequently, as

much time and effort is spent developing a model

for validation and comparison as is spent develop-

ing the algorithm or technique that the researcher

presents.

In an effort to address this issue in the context

of cardiovascular pressure signals, in this paper a

statistical model and simulator for cardiovascu-

lar pressure signals including three noise sources

commonly found in ABP and ICP patient data are

described. The model incorporates the additive,

amplitude modulation, and frequency modulation

effects of respiration on pressure signals. Addition-

ally, it accounts for the heart-rate variability typically

present in healthy or sick individuals. The user-

specified parameters of the model all have a clear

clinical interpretation such as mean heart rate,

respiratory frequency, heart-rate variability, mean

pressure, pulse pressure, and pulse pressure varia-

tion. It was demonstrated that this model produces

synthetic pressure signals having the same time-

domain and frequency-domain morphologies as real

cardiovascular pressure signals. Additionally, owing

to the number of user-specified parameters, the

proposed model is general enough to simulate

pressure signals from many different patient popu-

lations including children, adults, and animals.

4 SUMMARY

A statistical model and simulator for cardiovascular

pressure signals and noise have been described.

The model can be used to synthesize ensembles

of invasive pressure signals designed to match real

pressure signals from specific subject populations

by adjusting the user-specified parameters of the

model. The user-specified parameters of the model

have clear clinical interpretations such as the mean

heart rate, mean breathing frequency, heart-rate

variability, mean pressure, pulse pressure, and pulse

pressure variation. This model can be used for

validation of commercially available invasive pres-

sure monitors and for assessment and validation of

Fig. 4 Comparison of (a) one low-pressure synthetic signal and (b) one high-pressure synthetic
signal generated by the proposed model (dark-grey curves) against real ICP signals (light-
grey curves) taken from pediatric patients with traumatic brain injury
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biomedical signal-processing algorithms designed to

estimate any of these parameters.
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