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a b s t r a c t

Biomedical signals are nonstationary in nature, namely, their statistical properties are

time-dependent. Such changes in the underlying statistical properties of the signal and the

effects of external noise often affect the performance and applicability of automatic signal

processing methods that require stationarity. A number of methods have been proposed

to address the problem of finding stationary signal segments within larger nonstationary

signals. In this framework, processing and analysis are applied to each resulting locally

stationary segment separately.

The method proposed in this paper addresses the problem of finding locally quasi-

stationary signal segments. Particularly, our proposed algorithm is designed to solve the

specific problem of segmenting semiperiodic biomedical signals corrupted with broadband

noise according to the various degrees of external noise power. It is based on the sam-

ple entropy and the relative sensitivity of this signal regularity metric to changes in the
underlying signal properties and broadband noise levels.

The assessment of the method was carried out by means of experiments on ECG signals

drawn from the MIT-BIH arrhythmia database. The results were measured in terms of false

alarms based on the changepoint detection bias. In summary, the results achieved were a

d an
sensitivity of 97%, an

1. Introduction

Biomedical signals are intrinsically nonstationary because
their underlying statistical properties change with time. This
source of nonstationarity is intrinsic in the sense that the
origins are physiological in nature [1]. In addition to this intrin-
sic nonstationarity, an additional source of nonstationarity
present in biomedical signals obtained in practical settings is

the external noise and the corresponding changes in noise
characteristics such as noise power and noise bandwidth.
Such changes often decrease the performance of automatic
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error of 16% for records corrupted with muscle artifacts.

© 2009 Elsevier Ireland Ltd. All rights reserved.

signal processing methods, especially when the algorithm
parameters are selected for the entire time series but these
parameters might be locally unsuitable. In certain application
areas a nonstationary time series may be considered as a con-
catenation of stationary segments where properties can be
assumed homogeneous [2].

Decomposition of signals into stationary or quasi-
stationary intervals is a well-known problem often referred

to as time series segmentation [3]. The exact segmentation
of a nonstationary time series is a computationally inten-
sive problem that cannot be easily solved, especially when
dealing with long signals or when the statistical properties

erved.
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f the signal or noise change very slowly and continuously.
he methods available typically assume a piecewise station-
ry signal model or noise model and detect the instants of
hange. Signal segmentation due to changes in noise charac-
eristics such as noise power and bandwidth is typically an
asier problem than segmentation due to changes in underly-
ng signal characteristics. Physiologic signal parameters often
hange slowly, gradually, and continually which make the seg-
entation significantly more difficult to accomplish.
Time series segmentation is very important in many

elds and applications: speech processing [4] (coding, synthe-
is, speaker identification, estimation of speech parameters),
iomedical signal processing [5] (detection of onsets of spikes

n electroencephalograms, P-waves in electrocardiograms,
enoising), quality control [6], Internet traffic fluctuations [7],
mong many others. A number of approaches have been used
o solve the time series segmentation problem:

Dynamic programming based: This approach guarantees
the global optimality of the segmentation when it can be
quantified in terms of a cost function [8–11].
Top-down methods: These methods start with an unseg-
mented time series and add one point at a time. At the ith
step, they add a new boundary point by splitting one of the
segments. This is repeated until a stopping condition is met
[12,13,3].
Bottom-up methods: In these methods each point is seen
as a segment and then consecutive segments are merged
till a predefined number of segments is reached or the error
exceeds a threshold [14–16].
Random: The algorithms start with an arbitrary segmenta-
tion. Boundary points are randomly selected, taken away,
and then a search is performed to find the best position to
put them back [17].
Sliding window methods: These methods fix the left bound-
ary and try to place the right boundary as far as possible.
When a parameter of the current segment exceeds a thresh-
old, fix the current segment and proceed with the next one.
Repeat until the sequence ends [18,19].
Model based. A segmentation model assumes a predefined
number of segment-types or a prior distribution of the
parameters. The determination of the actual number of
segments is achieved by training and comparing several
separate models [20–22].

Most of these methods are complex, computationally
ntensive, and difficult to implement [20]. Additionally, some
f them require knowledge of a number of parameters in
dvance such as the number of segments [23], the stopping
ules [18], thresholds [24], number of models or states [25],

odel complexity or degree [21], or need training data [26]. The
omplexity of the segmentation methods greatly depends on
he specific segmentation problem they are aimed at solving.

hile complex algorithms are required to solve the general
egmentation problem, simpler algorithms can be developed
o address more specific segmentation problems encountered

n practical applications.

In this paper we describe a new method to automatically
egment long term biomedical signals that overcomes some of
he problems stated above for a particular case of the segmen-
i o m e d i c i n e 9 8 ( 2 0 1 0 ) 118–129 119

tation problem, namely, the segmentation of signal segments
corrupted by different degrees of broadband noise. The main
strengths of the method proposed are:

• Simple and efficient underlying algorithm: The proposed
method is based on the well known SampEn algorithm [27]
which is very simple to implement, and computationally
efficient. Additionally, windowed SampEn can be computed
incrementally.

• Non-supervised: Changes of SampEn related to noise are
of very high amplitude in comparison to SampEn changes
related to signal. Thus, thresholds generalize very well and
no customization is necessary.

• On-line application: The input data series can be processed
sequentially, in contrast to top-down or bottom-up based
methods. There is a small computation delay due to the
signal window employed.

• A-Priori signal model: The method does not require and
does not assume a statistical model of the signal.

Our proposed algorithm is designed to solve the specific
problem of segmenting semiperiodic biomedical signals cor-
rupted with broadband noise according to the various degrees
of signal-to-noise-ratio (SNR) while not creating segments
due to statistical changes in the underlying biomedical sig-
nals properties such as changes in frequency, amplitude, and
other signal properties within physiological normality. Conse-
quently, the resulting segments are still nonstationary in the
sense that the underlying statistical properties of the signal
change within the segment but within each of the segments
the corrupting broadband noise is stationary.

The problem of signal segmentation according to the
broadband noise power is significant in several biomedical
applications. For instance, changes in broadband in biomed-
ical signals is often an indicator of a change in the level of
physical activity [28], and decreases the performance of other
algorithms such as thresholding for wavelet-based denoising
[29], fiducial points detection [30] and interval measurements.
Broadband noise power changes are one of the most typical
signal changes since they can be caused by patient activity,
electrode-skin contact degradation, external source interfer-
ence, and multiple other causes. The method proposed is
based on a recently described property of sample entropy
(SampEn): high sensitivity to noise changes in semiperiodic
signals [31]. Fig. 1 graphically illustrates this sensitivity.

We chose to illustrate the segmentation algorithm by
applying it to electrocardiogram (ECG) signals because of their
widespread use, although the method can also be applied to
other semiperiodic biomedical signals such as arterial blood
pressure, intracranial pressure, plethysmogram, or respiration
signals.

The rest of the paper is structured as follows. In Section
2.1, we describe the SampEn metric used to detect noise level
changes. Section 2.2 is devoted to describe the relationship
between signal noise and SampEn, and demonstrate the suit-
ability of this metric for the purpose of the paper. The complete

algorithm is introduced in Section 2.3. Next, a set of compre-
hensive experimental studies is covered in Section 3, including
a description of the data set in Section 3.1, the experiments
in Section 3.2, and the assessment parameters in Section 3.3.



120 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 ( 2 0 1 0 ) 118–129

Fig. 1 – SampEn and noise power change in an ECG. The
signal exhibits a 5 dB SNR from 0 to 10 s, and it is noiseless
for the remaining 10 s. Such a change in the noise power

Fig. 2 – Illustrative example showing a synthetic ECG signal
corrupted by noise with different SNRs (14 segments with
SNRs:
level elicits a significant change in SampEn. This example
shows a straightforward case for illustrative purposes.

Results are discussed in Section 4. Finally, Section 5 includes
a number of concluding remarks.

2. Algorithm description

The proposed algorithm described here is aimed at auto-
matically segmenting an ECG into homogeneous epochs of
different lengths, according to changes in broadband noise
power. It is based on the relationship between SampEn and
broadband noise. All the elements involved in this method
are described in the following sections.

2.1. Underlying regularity metric: sample entropy

The underlying regularity metric used in our algorithm is sam-
ple entropy [27]. SampEn has been proposed as a regularity
metric to overcome some of the limitations associated with
approximate entropy (ApEn) [31]. SampEn is a nonlinear met-
ric that estimates the regularity in time series. It takes the time
series and looks for similar patterns with the same length. The
more frequent and likely these patterns are, the smaller is the
entropy level of the processed series. The sample entropy of a
time series 〈x(n)〉 of length N, SampEn(m, r, N) is computed as
follows:

1. Take m vectors Xm(1), Xm(2), . . . , Xm(N − m + 1), defined as
Xm(i) = [x(i), x(i + 1), . . . , x(i + m − 1)], for 1 ≤ i ≤ N − m + 1.
These vectors are m consecutive values of x, commencing
at the ith sample.

2. The distance between vectors Xm(i) and Xm(j), d[Xm(i), Xm(j)]
is defined as:
d[Xm(i), Xm(j)] = maxk=1,...,m(|x(i + k) − x(j + k)|) (1)

For a given Xm(i), count the number of j(1 ≤ j ≤ N − m, j /= i),
such that d[Xm(i), Xm(j)] ≤ r. This number is denoted as
Bi(r). For 1 ≤ i ≤ N − m, two new values are defined and
100, 0, −5, 10, 20, 100, 15, −10, 5, 10, 15, −3, −6, 100 dB).
Noise power changes trigger SampEn significant variations.

computed, Bm
i

(r) = (1/(N − m − 1))Bi(r) and Bm(r) = (1/(N −
m))

∑N−m

i=1 Bm
i

(r), where Bm(r) is the probability that two
sequences coincide for m points, and Am(r) is the proba-
bility that coincide for m + 1 points.

3. Length is increased to m = m + 1, and previous steps are
repeated to obtain the counterpart of B with this new
value of m, Am

i
(r) = (1/(N − m − 1))Ai(r) and Am(r) = (1/(N −

m))
∑N−m

i=1 Am
i

(r).
4. Finally, compute SampEn as SampEn(m, r) =

limN→∞{− log[Am(r)/Bm(r)]}. Since the time series length
is finite, SampEn is estimated as SampEn(m, r, N) =
− log[Am(r)/Bm(r)].

2.2. Relationship between sample entropy and
broadband noise power

The relationship between broadband noise and SampEn in
biomedical signals was first reported in the SampEn charac-
terization study described in [31]. The results indicated that,
for quasi-periodic signals, the SampEn increases as the SNR
decreases (defined as SNR = 10 log(

∑N

1 x(n)2/
∑N

1 z(n)2), being
z(n) the noise), in other words, SampEn is positively correlated
with the noise power, as shown in Figs. 1 and 2. Fig. 2 shows an
illustrative example of an ECG signal corrupted by noise with
different SNRs. The figure shows how noise power changes
cause clear dips and spikes as a consequence of the close
relationship between SampEn and broadband noise power.
Additionally, SampEn is nearly independent of the underly-
ing signal power (Fig. 3). Practically, this result indicates that
when broadband noise corrupts a quasi-periodic biomedical
signal with a line-spectra (e.g. arterial blood pressure, intracra-
nial pressure, and ECG) the SampEn increases as a function
of the noise power. On the other hand, in broadband signals,
increasing the power of broadband noise does not result in

significant increases in SampEn. Consequently, in biomedi-
cal signals that are broadband in nature and that cannot be
accurately modeled as quasi-periodic signals, the SampEn is
nearly independent of additive noise power, and therefore this
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ethod cannot be applied. In these cases, segmentation is
till possible using SampEn but based on the noise bandwidth
nstead of the noise power.

Our method takes advantage of this relationship between

roadband noise and SampEn to detect noise changes
etween consecutive intervals. The method is simple to imple-
ent and computationally inexpensive. Furthermore, it can

e applied in real time. This method is also robust since Sam-

Table 1 – SampEn segmentation method results for records corr
The SNRs for the noise intervals were: 9, 6, 3, 0, −3, −6, −9, −6, −
located at 129, 258, 387, 516, 644, 773, 902, 1031, 1160, 1289, 14
detection time offset (in seconds). False negatives (FNs) are repr
(FPs) is shown on the right column.

mitdb 129 258 387 516 644 773 902 10

SampEn segmentation method results for the mitdb records plus white ga
100 0 0 0 0 1 1 1 1
101 0 – – 1 1 1 1 1
102 1 0 0 0 1 1 1 0
103 0 1 0 0 1 1 1 –
104 1 1 1 1 1 1 1 0
105 0 0 0 0 1 1 1 3
106 0 0 0 6 1 1 0 2
107 1 0 1 0 2 2 1 2
108 1 0 1 0 1 4 5 0
109 0 0 0 0 1 1 1 1
111 2 0 0 0 2 1 – 0
112 0 0 – 0 1 – 1 0
113 1 2 2 1 1 1 1 1
114 0 0 1 1 2 1 1 0
115 1 0 1 0 2 1 1 1
116 0 1 0 0 1 1 – 0
117 1 0 1 0 0 3 1 1
118 1 0 1 – 2 1 1 1
119 1 1 – – 1 5 1 1
121 0 0 5 – 2 1 1 0
122 1 0 1 0 2 1 1 1
123 9 2 0 0 1 1 1 1
124 1 0 2 – – 2 1 1
200 0 9 1 2 1 3 – 1
201 1 1 1 0 1 1 1 1
202 1 0 0 0 1 – 3 2
203 – 0 0 0 – – – 4
205 0 0 – 0 3 2 1 0
207 – 0 – – – 4 0 0
208 4 0 1 0 1 1 1 1
209 0 0 – 0 2 1 1 1
210 0 2 1 0 0 1 – 0
212 5 0 7 1 1 1 1 2
213 0 0 0 0 2 0 1 9
214 1 1 1 0 1 1 1 1
215 0 1 0 1 1 1 1 0
217 1 1 0 1 1 1 0 7
219 0 0 0 0 1 1 1 0
220 2 0 0 2 1 1 1 1
221 0 0 0 0 1 1 1 0
222 2 0 1 0 – 2 – 1
223 0 0 0 0 1 2 1 1
228 0 1 – – 1 2 1 2
230 1 1 – 1 1 1 1 1
231 1 1 1 0 1 1 0 1
232 1 1 0 – 1 1 1 3
233 1 1 0 1 1 0 1 0
234 1 1 0 – 2 1 1 1
i o m e d i c i n e 9 8 ( 2 0 1 0 ) 118–129 121

pEn is not influenced by the underlying semiperiodic signal
power. The swing of the SampEn due to noise power changes
is large.
2.3. Segmentation algorithm description

The segmentation algorithm must split the signal into homo-
geneous segments in a non-supervised way. The beginning of

upted with synthetic white gaussian broadband noise.
3, 0, 3, 6, 9 and 12 dB. The actual changepoints were
18, 1547 and 1675 s. Results are expressed in terms of
esented by the symbol ‘–’. The number of false positives

31 1160 1289 1418 1547 1675 FPs

ussian broadband noise
1 0 1 0 2 0
1 1 0 1 2 0
1 1 0 0 2 0
0 1 1 1 2 1
1 0 1 1 1 3
1 1 0 – – 0
1 0 1 0 2 2
2 0 1 0 2 0
1 0 1 1 – 1
1 1 1 1 3 0
– 0 1 0 2 0
0 1 1 0 2 0
1 1 1 0 2 0
4 1 1 2 1 2
1 – 0 0 2 1
1 0 0 1 2 1
1 0 1 0 1 0
1 1 1 1 5 2
1 1 1 1 1 0
1 1 1 0 1 0
1 1 0 1 1 1
0 0 1 1 1 1
0 1 0 1 2 0
0 1 0 1 2 2
0 3 0 0 1 1
2 0 1 1 2 0
1 1 1 0 2 1
1 1 – 0 1 1
0 1 0 1 2 2
9 1 1 1 4 1
1 1 1 4 2 0
– 1 0 0 2 3
1 1 1 1 3 1
0 6 0 1 1 1
1 1 1 1 2 0
1 1 1 1 2 0
0 1 3 0 2 1
1 1 0 1 2 0
1 1 1 1 2 0
0 1 1 0 1 0
1 – 1 1 – 0
1 0 – 1 2 0
0 2 1 1 1 0
1 0 1 0 2 1
1 0 – 1 1 0
– 1 1 1 2 0
1 1 1 1 1 0
1 – 0 1 3 2
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each stationary interval will be marked by an index qj. The
lengths of the segments will be adapted to the local prop-
erties of the analyzed signal. In this case, the homogeneity
of a segment is defined in terms of the homogeneity of the

SNR.

The algorithm proceeds as follows. Given a signal of length
L and a window length N, the SampEn of all the windows cen-
tered at every sample x(i) is computed sequentially ((N/2) <

Table 2 – SampEn segmentation method results for records cor
for the noise intervals were: 9, 6, 3, 0, −3, −6, −9, −6, −3, 0, 3, 6, 9
258, 387, 516, 644, 773, 902, 1031, 1160, 1289, 1418, 1547 and 1
offset (in seconds). False negatives (FNs) are represented by the
on the right column.

mitdb 129 258 387 516 644 773 902

SampEn segmentation method results for the mitdb records plus pink col
100 0 0 0 0 1 1 1
101 0 – 1 0 1 1 0
102 1 0 0 0 1 1 1
103 0 1 0 0 1 1 1
104 1 1 – 1 1 1 1
105 0 0 0 0 1 0 0
106 2 0 0 2 1 1 1
107 1 0 0 0 1 1 1
108 0 0 0 0 1 1 1
109 1 0 0 0 1 1 1
111 1 0 0 0 – 1 –
112 0 0 – 0 0 – 2
113 0 0 0 0 1 1 1
114 0 0 0 0 1 0 0
115 0 1 0 0 1 0 1
116 0 0 0 0 1 1 –
117 0 0 1 0 1 – 1
118 1 0 0 0 1 1 1
119 0 0 – 0 1 1 1
121 0 0 – 1 0 0 1
122 1 0 0 0 1 1 1
123 9 0 0 0 1 1 1
124 0 0 0 0 – 0 1
200 0 – 0 0 1 1 4
201 0 0 0 1 1 1 1
202 0 0 0 1 1 2 0
203 – 0 0 0 – 6 3
205 0 0 – 0 1 0 1
207 – 0 – – – 5 0
208 0 0 0 0 1 1 1
209 0 0 – 0 1 1 1
210 0 – 0 1 1 1 –
212 5 0 0 0 1 1 1
213 0 0 0 0 1 0 1
214 1 0 0 0 1 1 1
215 0 – 1 1 1 1 1
217 1 1 0 1 1 1 0
219 1 0 0 0 1 1 0
220 1 0 1 0 1 1 1
221 0 0 0 0 1 1 1
222 – 0 0 0 – 1 –
223 0 0 0 0 1 1 1
228 0 0 1 1 1 2 0
230 0 0 0 0 1 1 0
231 0 0 0 0 1 1 0
232 0 0 0 – 1 1 1
233 0 1 1 0 1 1 0
234 0 0 0 – 2 1 1
b i o m e d i c i n e 9 8 ( 2 0 1 0 ) 118–129

i < L − (N/2) to avoid border effects). Each computed value of
SampEn, si is compared with two thresholds, termed upper
threshold th and lower threshold tl. These thresholds are
calculated from two parameters of a window of previous

SampEn measurements (since last changepoint), their mean
smean and their standard deviation sstd. If si falls out of
the interval defined by the thresholds, a changepoint qj is
set at i.

rupted with synthetic pink colored noise (1/f ). The SNRs
and 12 dB. The actual changepoints were located at 129,
675 s. Results are expressed in terms of detection time
symbol ‘–’. The number of false positives (FPs) is shown

1031 1160 1289 1418 1547 1675 FPs

ored broadband noise
0 0 0 1 0 1 1
1 1 1 1 1 2 2
1 1 0 0 3 2 1
– 0 1 0 1 3 1
0 1 0 1 1 1 5
1 0 0 0 – – 1
1 0 0 2 0 2 2
1 1 1 0 0 2 0
0 1 0 1 1 – 3
1 0 1 0 2 2 3
0 – 2 0 2 2 1
1 0 1 0 1 2 0
0 1 1 0 1 1 0
1 1 0 0 1 4 3
0 1 – 0 1 2 2
0 1 0 0 2 4 1
1 1 0 3 0 – 1
1 0 1 1 0 5 1
1 1 1 1 1 1 1
1 0 1 1 0 1 1
0 0 0 0 1 2 2
1 1 0 1 0 2 1
1 0 0 1 0 1 0
0 0 1 0 0 2 3
6 0 1 1 5 2 1
1 9 0 1 1 1 1
0 0 1 3 1 2 2
0 1 1 1 0 – 1
1 0 0 0 1 – 2
1 9 0 0 2 2 2
1 1 0 0 1 2 1
0 – 1 0 0 2 1
1 0 1 0 1 3 4
3 0 1 0 1 2 1
0 0 0 1 0 2 1
0 1 0 1 0 2 2
– 0 1 3 0 2 1
1 0 1 0 1 2 1
0 1 0 0 0 2 0
0 0 0 1 0 1 0
1 0 1 0 1 4 2
0 0 1 6 0 2 1
1 0 1 0 1 1 3
1 0 0 1 1 1 2
– 1 0 – 1 2 0
1 – 0 1 1 2 2
0 0 1 0 0 2 2
1 0 – 0 1 2 2
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The detailed steps of the algorithm are:

1. Input: SampEn si calculation window length N.
2. Input: Parameter ˛, used to compute th = smean + ˛sstd,
and tl = smean − ˛sstd.
3. Input: Signal 〈x(n)〉 of length L � N.
4. Initialization: Compute s1 as the SampEn at x(N/2) for the

first signal window {x(1), x(2), . . . , x(N)}.

Table 3 – Summary of SampEn segmentation results for records
gaussian and pink colored) in terms of quantitative measures.

mitdb Gaussian white noise

TP FP FN S (%) Err (%)

Quality estimators for the mitdb records plus broadband noise
100 13 0 0 100 0
101 11 0 2 85 15
102 13 0 0 100 0
103 12 1 1 92 15
104 13 3 0 100 23
105 11 0 2 85 15
106 13 2 0 100 15
107 13 0 0 100 0
108 12 1 1 92 15
109 13 0 0 100 0
111 11 0 2 85 15
112 11 0 2 85 15
113 13 0 0 100 0
114 13 2 0 100 15
115 12 1 1 92 15
116 12 1 1 92 15
117 13 0 0 100 0
118 12 2 1 92 23
119 11 0 2 85 15
121 12 0 1 92 8
122 13 1 0 100 8
123 13 1 0 100 8
124 11 0 2 85 15
200 12 2 1 92 23
201 13 1 0 100 8
202 12 0 1 92 8
203 9 1 4 69 38
205 11 1 2 85 23
207 9 2 4 69 46
208 13 1 0 100 8
209 12 0 1 92 8
210 11 3 2 85 38
212 13 1 0 100 8
213 13 1 0 100 8
214 13 0 0 100 0
215 13 0 0 100 0
217 13 1 0 100 8
219 13 0 0 100 0
220 13 0 0 100 0
221 13 0 0 100 0
222 9 0 4 69 31
223 12 0 1 92 8
228 11 0 2 85 15
230 12 1 1 92 15
231 12 0 1 92 8
232 11 0 2 85 15
233 13 0 0 100 0
234 11 2 2 85 31

Globals 578 32 46 93 13
i o m e d i c i n e 9 8 ( 2 0 1 0 ) 118–129 123

5. Initialization: Initialize parameters smean, sstd, th and tl.
6. Initialization:j = 1, q = 〈∅〉.
7. FORi = (N/2) + 1TOi = L − (N/2)DO
8. BEGIN

9. si = SampEn(m, r, N) for {x(i), x(i + 1), . . . , x(i + N)}

10. IFsi < tlORsi > thTHEN {Set changepoint}
11. BEGIN
12. qj = i

corrupted with synthetic broadband noise (white

Pink colored noise

TP FP FN S (%) Err (%)

13 1 0 100 8
12 2 1 92 23
13 1 0 100 8
12 1 1 92 15
12 5 1 92 46
11 1 2 85 23
13 2 0 100 15
13 0 0 100 0
12 3 1 92 31
13 3 0 100 23
10 1 3 77 31
11 0 2 85 15
13 0 0 100 0
13 3 0 100 23
12 2 1 92 23
12 1 1 92 15
11 1 2 85 23
13 1 0 100 8
12 1 1 92 15
12 1 1 92 15
13 2 0 100 15
13 1 0 100 8
12 0 1 92 8
12 3 1 92 31
13 1 0 100 8
13 1 0 100 8
11 2 2 85 31
11 1 2 85 23
8 2 5 62 54

13 2 0 100 15
12 1 1 92 15
10 1 3 77 31
13 4 0 100 31
13 1 0 100 8
13 1 0 100 8
12 2 1 92 23
12 1 1 92 15
13 1 0 100 8
13 0 0 100 0
13 0 0 100 0
11 2 2 85 31
13 1 0 100 8
13 3 0 100 23
13 2 0 100 15
11 0 2 85 15
12 2 1 92 23
13 2 0 100 15
11 2 2 85 31

583 71 41 93 18
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bias [31]. The exact values of these parameters are not
124 c o m p u t e r m e t h o d s a n d p r o g r a m

13. j = j + 1
14. Reset smean and sstd

15. ENDIF
16. Update parameters smean, sstd, th and tl.
17. ENDFOR

18. Output: Changepoints (q1, q2, . . . , qm) at which the Sam-

pEn variation thresholds between two consecutive
windows are exceeded.

Table 4 – SampEn segmentation method results for records cor
intervals were: 6, 100, 6, 100, 6, 100, 6, 100, 6, 100, 6, 100, 6 and
387, 516, 644, 773, 902, 1031, 1160, 1289, 1418, 1547 and 1675 s
(in seconds). False negatives (FNs) are represented by the symb
right column.

mitdb 129 258 387 516 644 773 902 1

SampEn segmentation method results for the mitdb records corrupted wi
100 12 0 12 4 12 2 12
101 15 4 2 3 5 8 2
102 2 5 4 5 5 8 5
103 6 7 4 7 7 6 5
104 – – 6 1 7 6 5
105 4 3 4 7 5 4 3
106 8 5 4 9 5 14 –
107 4 7 4 7 3 12 5
108 11 7 2 9 5 6 5
109 2 7 10 7 3 12 5
111 4 7 4 3 5 7 6
112 4 5 6 7 7 0 3
113 2 5 2 7 5 12 7
114 2 7 4 5 3 7 3
115 4 7 8 1 8 4 3
116 6 5 6 5 3 8 1
117 2 7 0 9 3 9 3
118 2 9 – – 5 0 5
119 2 7 2 7 3 9 3
121 4 5 6 9 3 8 5
122 2 9 4 3 1 7 3
123 4 5 4 7 3 6 3
124 4 7 2 9 3 12 5
200 2 9 8 5 3 12 5
201 2 7 2 5 3 8 3
202 4 7 4 7 5 6 7
203 2 7 8 11 9 – 12
205 2 7 4 5 3 8 3
207 2 3 6 9 5 8 3
208 0 9 6 5 3 9 5
209 2 1 6 9 5 2 5
210 4 – 10 3 3 8 5
212 2 5 – – – 2 7
213 11 1 6 5 3 6 3
214 6 5 14 5 5 8 3
215 – 11 12 9 5 10 3
217 4 7 6 5 3 8 1
219 0 9 2 5 3 8 1
220 4 7 0 7 7 6 5
221 6 3 2 9 3 6 1
222 2 7 4 5 5 8 5
223 2 9 12 5 7 12 –
228 4 7 4 5 3 10 3
230 4 7 12 1 5 8 9
231 12 3 4 5 3 8 5
232 2 7 8 7 3 12 3
233 2 7 6 1 1 10 1
234 4 7 4 7 3 8 3
b i o m e d i c i n e 9 8 ( 2 0 1 0 ) 118–129

The selection of the parameter N depends on the abrupt-
ness of the change to be detected. When small windows
are used to calculate SampEn, the measures have a large
variance. Alternatively, large windows may have a large
crucial, values of a few seconds generalize very well.
Regarding parameter ˛, as the SampEn variation is great
even for relative small changes in noise level (Fig. 2),

rupted with real muscle artifacts. The SNRs for the noise
100 dB. The actual changepoints were located at 129, 258,

. Results are expressed in terms of detection time offset
ol ‘–’. The number of false positives (FPs) is shown on the

031 1160 1289 1418 1547 1675 FPs

th real muscle artifacts
2 10 2 10 1 0 0
9 2 7 3 7 7 3
6 3 8 5 6 6 0
6 1 10 3 6 6 0
6 3 7 3 6 6 2
– – 15 1 8 12 2
6 3 6 3 10 6 0
8 1 8 5 8 2 1
4 10 4 1 8 10 1
6 3 12 5 8 6 1
8 5 6 1 6 4 2

10 5 10 7 6 8 0
8 3 8 3 6 4 1
6 3 6 3 6 4 1

10 9 7 3 4 8 2
5 5 3 1 2 5 1
6 1 6 3 6 4 1
8 1 12 3 6 – 4
8 1 11 3 0 2 1
4 3 8 3 6 2 0
8 1 8 1 8 6 5
8 1 8 3 6 4 0
8 3 10 5 10 10 1

10 5 12 5 6 10 4
8 3 4 5 6 6 1

12 5 6 3 6 6 0
6 9 10 15 10 6 1
8 1 8 3 6 4 0
8 3 6 5 4 10 3
6 1 2 3 0 4 2
6 1 10 3 4 4 1
9 1 8 3 6 4 2

10 1 8 3 8 6 4
10 3 10 5 6 6 1

6 5 15 9 10 4 3
10 3 12 3 8 6 0

8 1 11 3 6 2 2
8 1 12 11 6 4 4

10 3 8 5 6 4 0
– 1 6 5 6 6 3
8 3 4 5 6 6 0
9 1 6 5 6 6 2
8 1 10 3 12 4 3
2 1 12 1 8 8 3
6 7 6 9 2 6 0
8 1 10 1 8 4 1

12 1 – 1 6 4 10
8 5 6 1 10 4 2
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Table 5 – SampEn segmentation method results for the records in the Noise Stress Test Database (nstdb) corrupted with
real electrode motion artifacts. The ECGs are created alternating noiseless with noisy segments. The SNRs for all the
noise intervals in each record were: 6, 12 and 18 dB. The end of the record’s name is related to this SNR value. The actual
changepoints were located at 300, 420, 540, 660, 780, 900, 1020, 1140, 1260, 1380, 1500, 1620 and 1740 s. Results are
expressed in terms of detection time offset (in seconds). False negatives (FNs) are represented by the symbol ‘–’. The
number of false positives (FPs) is shown on the right column.

mitdb 300 420 540 660 780 900 1020 1140 1260 1380 1500 1620 1740 FPs

SampEn segmentation method results for the nstdb records corrupted with real electrode motion artifacts
118e06 3 7 9 5 15 9 3 7 5 7 5 13 5 2
118e12 5 9 15 7 – 7 7 9 7 7 5 – 9 2
118e18 9 11 14 11 – 7 11
119e06 3 7 3 5 3 9 3
119e12 7 11 5 9 5 11 7
119e18 9 9 5 7 5 7 9

Fig. 3 – Comparison of SampEn measurements for real
noiseless ECG signals (MIT database records 118 and 119)
and white noise. As can be observed, the SampEn for
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•

aussian white noise is several orders of magnitude greater
han that of the signal.

he selection of the exact value for it is also very flexi-
le.

. Experimental studies

.1. Dataset

he experimental database was composed of a set of
CG records drawn from the MIT-BIH arrhythmia database
fs = 360 Hz) [32]. The noisy ECG recordings were cre-
ted using calibrated amounts of white noise, pink noise,
rtifact muscle noise from MIT record ‘ma’ and elec-
rode motion noise from MIT record ‘em’ [33]. The noise
ower level was changed at points as described in
ection 4.

.2. Experiments

y combining real signals with synthetic and real noise from
he MIT database, we configured the following two sets of

xperiments:

Real ECGs plus white gaussian and pink noise. The noiseless
real recordings were corrupted with synthetic noise in sev-
7 – 13 5 9 – 2
9 7 7 5 7 3 0

13 9 9 5 11 9 0
13 – 11 5 5 11 1

eral intervals. All the signals from the arrhythmia database
were used.

• Real ECGs plus real noise. The noiseless recordings were
corrupted with noise record ‘ma’ or ‘em’ in several intervals.

3.3. Quantitative performance assessment

The assessment of the experimental results was carried out
in terms of the following quantitative measures:

• TP: True positive. We termed TP the detection of a noise
power change at a signal location within ±15 s of an actual
change.

• FP: False positive. A FP corresponds to a false alarm, it takes
place when a nonexistent noise power change is detected.

• FN: False negative. False negatives account for undetected
actual changes

• Sensitivity: The ratio of correctly detected changes, S =
TP/(TP + FN).

• E: Error. Defined as E = (FP + FN)/(real number of
transitions).

4. Results and discussion

The results for the experiments described in Section 3.2 are
shown in Tables 1–5. Tables 1, 2, 4 and 5 depict the change-
point detection bias in seconds. Table 3 shows the quantitative
performance assessment in case of synthetic noise for each
register. The specific parameters used were m = 2, r = 0.25
([31,34,27]), N = 14 s (window overlapping 13 s) and ˛ = 2.5.
Tables 6 and 7 illustrate this parameter flexibility by means of
ROC values for a subset of experiments. For illustrative pur-
poses, Fig. 4a depicts si for a favorable segmentation case,
where the SampEn differences between consecutive intervals
are clear, whereas the plot in Fig. 4b corresponds to a more dif-
ficult segmentation case due to high SNR and therefore a low
SampEn. In order to assess the influence of the abruptness
of the noise power changes, some experiments were repeated
using a linear interpolation of the noise power level between
intervals. If the size of the temporal window used to compute
SampEn was larger than the duration of the noise power inter-

val, the same results were obtained. An example of the noise
power changes on ECG segmentation is shown in Fig. 5.

We also carried out an additional experiment to enable a
comparative assessment of the performance of the method



126 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 ( 2 0 1 0 ) 118–129

Table 6 – ROC values for the N parameter in the SampEn
segmentation algorithm. The SampEn threshold ˛ has
been set to 3.0 and one entropy sample per second is
calculated. Three real records from the mitdb have been
used (100, 107 and 122). The records have been
corrupted with synthetic white gaussian broadband
noise. The SNRs for the noise intervals were:
9, 6, 3, 0, −3, −6, −9, −6, −3, 0, 3, 6, 9 and 12 dB. The actual
changepoints were located at 129, 258, 387, 516, 644,
773, 902, 1031, 1160, 1289, 1418, 1547 and 1675 s. The
false positive rate (FPR) and true positive rate (TPR) mean
values for the three experiments are presented. As it can
be seen in the table, the detection results do not depend
on N in the analyzed range.

N FPR TPR

ROC values for the N parameter in the SampEn
segmentation algorithm

2 0 1
4 0 1
6 0 1
8 0 1
10 0 1
12 0 1
14 0 1

proposed. We chose a method based on a time-scale approach
to perform a detection of abrupt spectral changes in a non
stationary signal. A stationarity index is obtained from the
time-scale representation, in our case an estimation of the
noise power level based on the first detail power of the wavelet
transform. For each time value, two intervals are considered

on both sides of this central point. If the distance between
the intervals sharply peaks, there is a change at the studied
instant. The selection of this specific method was based on its
simplicity, ease of implementation, similar application frame-

Table 7 – ROC values for the ˛ parameter in the SampEn
segmentation algorithm. The window length N has been
set to 2 s. Three real records from the mitdb have been
used (100, 107 and 122). The records have been
corrupted with synthetic white gaussian broadband
noise. The SNRs for the noise intervals were:
9, 6, 3, 0, −3, −6, −9, −6, −3, 0, 3, 6, 9 and 12 dB. The actual
changepoints were located at 129, 258, 387, 516, 644,
773, 902, 1031, 1160, 1289, 1418, 1547 and 1675 s. The
false positive rate (FPR) and true positive rate (TPR) mean
values for the three experiments are presented. The
values for ˛ that optimize the ROC curve are between 2
and 4.

˛ FPR TPR

ROC values for the ˛ parameter in the SampEn
segmentation algorithm

1.0 0.47 0.72
1.5 0.20 0.63
2.0 0.04 0.94
2.5 0.01 0.99
3.0 0 1
3.5 0 1
4.0 0 1
4.5 0 0.79
5.0 0 0.47
5.5 0 0.52
6.0 0 0.23

Fig. 4 – (a) Example of a favorable segmentation problem
because of the clear differences between the broadband
noise power in consecutive intervals (MIT record 119 with
14 different SNR levels:
−20, 100, −15, 100, −5, 100, 0, 100, 5, 100, 10, 100, 15, 100).
(b) Example of a difficult segmentation problem because of
the high SNR that reduces the differences between the
underlying signal and the noise, with regard to SampEn
(MIT record 119e24 with 14 SNR intervals). Odd ones

correspond to 24 dB em noise, and even ones are noiseless.

work, and good reported results. Its details can be found in
the paper [35]. The comparative results of this experiment are
shown in Tables 8 and 9 for real noise ‘ma’ and ‘em’, respec-
tively.

The experiments were aimed at finding the estimated
changepoints and study their bias in relation to the actual
ones. The results for different conditions of SNR and change-
points location showed a small detection bias in general, they
fell within the ±15 s interval in most cases. Additionally, no
transitions were detected at points where no change took
place, in other words, the number of FP was 0 in many cases. In
a few experiments, the performance of the method was poor
because the signals were already noisy. This is more apparent

for signals corrupted with muscle noise.

Noise power level change minimum detectable step was
3 dB. The noise influence is too small to elicit a significant
SampEn change for smaller variations, specially within inter-
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Table 8 – Summary of segmentation results for records corrupted with muscle artifacts in terms of quantitative
measures. Comparative study.

mitdb Time-scale based Proposed

TP FP FN S (%) Err (%) TP FP FN S (%) Err (%)

Comparison between the method proposed and a time-scale based method
100 12 5 1 92 46 13 0 0 100 0
101 12 5 1 92 46 13 3 0 100 23
102 8 7 5 62 92 13 0 0 100 0
103 12 3 1 92 31 13 0 0 100 0
104 5 2 8 38 77 11 2 2 85 31
105 13 2 0 100 15 11 2 2 85 31
106 10 3 3 77 46 12 0 1 92 8
107 13 2 0 100 15 13 1 0 100 8
108 11 5 2 85 54 13 1 0 100 8
109 13 2 0 100 15 13 1 0 100 8
111 12 3 1 92 31 13 2 0 100 15
112 11 2 2 85 31 13 0 0 100 0
113 12 4 1 92 38 13 1 0 100 8
114 11 6 2 85 62 13 1 0 100 8
115 11 4 2 85 46 13 2 0 100 15
116 11 2 2 85 31 13 1 0 100 8
117 11 5 2 85 54 13 1 0 100 8
118 12 3 1 92 31 10 4 3 77 54
119 13 3 0 100 23 13 1 0 100 8
121 11 3 2 85 38 13 0 0 100 0
122 12 3 1 92 31 13 5 0 100 38
123 11 2 2 85 31 13 0 0 100 0
124 13 2 0 100 15 13 1 0 100 8
200 11 4 2 85 46 13 4 0 100 31
201 11 2 2 85 31 13 1 0 100 8
202 11 4 2 85 46 13 0 0 100 0
203 8 5 5 62 77 12 1 1 92 15
205 12 3 1 92 31 13 0 0 100 0
207 12 1 1 92 15 13 3 0 100 23
208 12 4 1 92 38 13 2 0 100 15
209 13 3 0 100 23 13 1 0 100 8
210 10 5 3 77 62 12 2 1 92 23
212 11 4 2 85 46 10 4 3 77 54
213 13 3 0 100 23 13 1 0 100 8
214 12 1 1 92 15 13 3 0 100 23
215 8 6 5 62 85 12 0 1 92 8
217 13 2 0 100 15 13 2 0 100 15
219 13 3 0 100 23 13 4 0 100 31
220 9 5 4 69 69 13 0 0 100 0
221 9 3 4 69 54 12 3 1 92 31
222 11 4 2 85 46 13 0 0 100 0
223 13 2 0 100 15 12 2 1 92 23
228 8 3 5 62 62 13 3 0 16 23
230 13 2 0 100 15 13 3 0 100 23
231 12 4 1 92 38 13 0 0 100 0
232 12 4 1 92 38 13 1 0 100 8
233 13 2 0 100 15 12 10 1 92 85

v
d
t
w
i
c
a

r

234 13 3 0 100 23

Globals 543 160 81 87 39

als with high SNR. Therefore, some changepoints cannot be
etected in these cases. From the experiments, we concluded
hat at least SNR changes should be equal or greater than 3 dB
hen SNR is 6 dB or higher. However, since small SNR changes

n an otherwise almost clean signal do not imply noticeable

hanges in signal processing methods performance, there is
ctually no need to segment signals in these cases.

Furthermore, if the SNR is relatively high (above 20 dB),
egardless of the SNR difference between consecutive seg-
13 2 0 100 15

607 81 17 97 16

ments, the method is unable to detect some changepoints
either. This was somehow expected, since these cases corre-
spond to very low power noise and therefore it is not necessary
to carry out any segmentation.

With regard to the result differences between the two sets

of experiments, it is apparent that the algorithm performance
with ‘ma’ noise is lower than with synthetic white gaussian
noise. The performance of the proposed algorithm improves
with the bandwidth of the noise process since higher band-
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Table 9 – Summary of segmentation results for records corrupted with electrode motion artifacts in terms of quantitative
measures. Comparative study.

mitdb Time-scale based Proposed

TP FP FN S (%) Err (%) TP FP FN S (%) Err (%)

Comparison between the method proposed and a time-scale based method
118e06 13 2 0 100 15 13 2 0 100 15
118e12 13 2 0 100 15 11 2 2 85 31
118e18 10 4 3 77 54 10 2 3 77 38
119e06 13 2 0 100 0 13 0 0 100 0
119e12 13 3 0 100 0 13 0 0 100 0
119e18 11 2 2 85 31

Globals 73 15 5 93 19

Fig. 5 – Nonabrupt noise power change. Changepoints (only
two are shown for the sake of clarity) are correctly detected
if the size of the windows is larger than the duration of the

progressive change.

width results in higher SampEn values. As the bandwidth
increases, the algorithm performs better and there is a per-
formance degradation for colored noise as the bandwidth
decreases. Practically, this algorithm is designed to be used
with broadband noise and it can be used for colored noise with
a continuous spectrum as long as the underlying biomedical
signal is quasi-periodic (i.e. with line spectra).

In summary, the proposed method works well without
parameter optimization for ECG signals corrupted by noise
provided three conditions are met: (1) the noise must be broad-
band, (2) the SNR should be below 25 dB, otherwise the signal is
almost clean and there is no need to segment it, and (3) the SNR
difference between consecutive segments should be at least
3 dB, else the signal processing methods are not significantly
influenced by the change. If the noise power changes are gen-
tle instead of abrupt, the parameter N should be updated
accordingly. If the resulting ramp fits into the windows, the
detection is performed as in the previous cases.
5. Conclusion

We presented a novel and simple method to segment
semiperiodic biomedical signals based on SampEn variations.
12 1 1 92 15

72 7 6 92 16

This method can be implemented on real-time applications.
It requires no filtering or signal domain transform. No prior
knowledge about the number of segments, signal features or
convergence conditions are necessary either. Additionally, this
method can open a new field of applications of regularity met-
rics that further improve the results achieved in this work.

The segmentation parameters were kept constant for all
the experiments since this method is intended to be unsuper-
vised. However, some parameter adjustment can increase the
accuracy of the results in case even more accuracy is required,
specially for relatively clean signals, small SNR changes, or
signals with smooth noise level changes instead of abrupt
changes.

The algorithm performance decreases when the SNR dif-
ference between consecutive segments is smaller than 3 dB,
the two SNRs are very high, or the noise is not broadband.
This is compatible with the objectives of the method since
small noise power changes do not cause changes in other
signal processing methods parameters, there is no need to
segment almost noiseless signal intervals, and other types of
noise require different methods.

It is important to emphasize that our proposed algo-
rithm is designed to solve the specific problem of segmenting
semiperiodic biomedical signals corrupted with broadband
noise according to the various degrees of SNR while not cre-
ating segments due to statistical changes in the underlying
biomedical signals properties such as changes in frequency,
amplitude, and other signal properties within physiological
normality. Because of this, the resulting segments are still
technically nonstationary in the sense that the underlying sta-
tistical properties of the signal change within the segment but
within each of the segments the corrupting broadband noise
is stationary. The problem of signal segmentation according to
the broadband noise power is significant in several biomedical
applications (for example, threshold selection for denoising,
fiducial point detection and heartbeat classification) and our
results indicate that can be solved elegantly using a simple and
computationally efficient algorithm based on the SampEn.
This metric may also prove useful to solve other segmentation
problems.
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