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be feedback processes so that the activity of one cell may affect the
activity of the others in the vicinity [6]. Donor history, including factors
such as infections and stress, is likely to be an important consideration
when determining the fraction of time that exposures to RF fields lead
to changes in neutrophil activity. The gradient of the electric fields can
lead to small drift currents that can increase the rate at which C-AMP
molecules strike the surface of the neutrophils [7] and thus can affect
neutrophils’ behavior. In short, our study indicates that the effects of
RF exposure on neutrophil chemotaxis should be considered for further
exploration in larger and more controlled studies.
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Complexity Analysis of Arterial Pressure During Periods
of Abrupt Hemodynamic Changes
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Abstract—In this communication, we estimated the Lempel–Ziv com-
plexity (LZC) on over 40 h of arterial blood pressure (ABP) recordings
corresponding to 18 mechanically ventilated animal subjects. In this study,
all subjects underwent a period of abrupt hemodynamic changes after
an induced injury involving severe blood loss leading to hemorrhagic
shock, followed by fluid resuscitation using either lactated ringers or
0.9% normal saline. The LZC metric experienced a statistically significant
increase immediately following the induced injury and
a statistically significant reduction following the administration of fluid
therapy . These results indicate that LZC of ABP may be
useful as a dynamic metric to assess fluid responsiveness.

Index Terms—Arterial blood pressure (ABP), fluid responsiveness,
hemodynamic changes, Lempel–Ziv complexity (LZC).

I. INTRODUCTION

In this study, we analyzed the arterial blood pressure (ABP) sig-
nals during periods of abrupt hemodynamic changes using Lempel–Ziv
complexity (LZC). This complexity metric was proposed by Lempel
and Ziv [1] to evaluate the randomness of finite sequences. It is a non-
parametric and simple-to-calculate measure of complexity for 1-D sig-
nals that does not require long data segments to be computed [2]. LZC
has been widely applied in biomedical signal analysis. It has been used
to study the electroencephalogram (EEG) signal of epileptic seizure
[3] and the brain information transmission [4]. LZC was also applied to
EEG signals in order to quantify the relationship between brain activity
patterns and depth of anesthesia [5]. Moreover, EEG and magnetoen-
cephalogram recordings from Alzheimer’s disease patients have been
analyzed with this measure [6], [7]. LZC has also been used to detect
ventricular tachycardia and fibrillation [2], to characterize complexity
of DNA sequences [8], and to quantify the complexity in uterine elec-
tromyography [9].

In [10], we studied the LZC and its interpretability in terms of clas-
sical signal processing concepts such as frequency, number of har-
monics, frequency variability of signal harmonics, and signal band-
width. Our results indicated that LZC was particularly useful as a scalar
metric to estimate the bandwidth of random processes.

In this study, we estimated the LZC on over 40 h of ABP record-
ings corresponding to 18 mechanically ventilated animal subjects. All
subjects underwent a period of abrupt hemodynamics changes after an
induced injury involving severe blood loss, followed by fluid resusci-
tation.
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TABLE I
WEIGHT (WT), BLOOD LOSS DURING INJURY (EBL_INJ), BLOOD LOSS DURING RESUSCITATION (EBL_RES), CHANGE IN PPV, CARDIAC OUTPUT (CO),

AND GLOBAL END-DIASTOLIC VOLUME (GEDV) VALUES, AT BASELINE (BASELINE), DURING INJURY AFTER THE
BLEEDING STOPPED (BLEED STOP) AND AFTER POSTRESUSCITATION (POST RESUS)

Prediction of fluid responsiveness in mechanically ventilated
patients is a clinically significant problem. Several studies have
investigated the predictive factors of fluid responsiveness in intensive
care unit (ICU) patients. These studies concluded that dynamic pa-
rameters should be used preferentially to static parameters [11]. In
contrast to standard static preload indices, stroke volume variation
(SVV) and pulse pressure variation (PPV) showed good performance
in predicting fluid responsiveness in patients with several critical
conditions [12]–[14]. These dynamic parameters quantify changes
in arterial pulse pressure as a measure of the sensitivity of the heart
to changes in filling volume induced by changes in intrathoracic
pressures with mechanical ventilation. These cyclic changes cause
transient changes in stroke volume and thus PPV in preload dependent,
but not in preload-independent states. Consequently, in this study,
we investigated the LZC of ABP in mechanically ventilated subjects,
because our previous results [10] involving the interpretation of LZC
indicate that this complexity metric can capture the variability in ABP
due to positive pressure ventilation.

II. LEMPEL–ZIV COMPLEXITY

LZC is a nonparametric measure for finite sequences related to the
number of distinct substrings and the rate of their occurrence along
the sequence, with larger values corresponding to more complexity in
the data [1]. LZC analysis is based on a coarse-graining of the mea-
surements, so the ABP signal must be transformed into a finite symbol
string. In this study, we used the simplest way: a binary sequence con-
version (zeros and ones). By comparison with the mean value , the
original data are converted into a 0-1 sequence. The binary string ob-
tained is scanned from left to right and a complexity counter is
increased by one unit every time a new subsequence of consecutive
characters is encountered in the scanning process. The complete com-
putational algorithm of is described in [5].

III. SUBJECTS AND DATA

The database used in this study included 18 ABP signals sampled at
50 Hz obtained from 18 mechanically ventilated crossbred Yorkshire
swine (over 40 h of ABP recordings). These recordings were acquired
at the Animal Laboratory of the Oregon Health and Science Univer-
sity (Portland, OR). The subjects underwent Grade V liver injury after
splenectomy, while receiving mechanical ventilated, and general anes-
thesia with isoflurane. All subjects in the database underwent a period
of abrupt hemodynamic changes after an induced Grave V liver injury
involving severe blood loss resulting in hemorrhagic shock, followed
by fluid resuscitation with either 0.9% normal saline or lactated ringers
solutions. For each subject, Table I details weight, blood loss during
injury, blood loss during resuscitation, and change in PPV. Cardiac
output and global end-diastolic volume values at baseline, during in-
jury after the bleeding stopped and after postresuscitation were also
showed. The study protocol was reviewed and approved by the Institu-
tional Review Board at Oregon Health and Science University.

Before LZC estimation, the ABP signals were bandpass filtered to
eliminate the low-frequency components (baseline trend) and remove
the mean pressure [direct current (dc) component]. We used a band-
pass finite-impulse response (FIR) filter with cutoff frequencies of 0.1
and 10 Hz. This guaranteed that our LZC estimations obtained from
the ABP signal were based exclusively on the ABP morphology, be-
cause both the mean ABP and the baseline trend were eliminated with
the filter. The 10-Hz FIR low-pass filter was used to eliminate high-fre-
quency noise due to artifact. Each filtered ABP signal was windowed
into segments of 10 s in duration. LZC was estimated for each segment.

Statistical analysis was aimed at determining the statistical signifi-
cance of the mean LZC changes in ABP signals before injury, imme-
diately following injury, and after fluid resuscitation for each of the 18
subjects. Mean LZC values were obtained for 10-min windows imme-
diately before injury, during hemorrhagic shock (after injury), and after
fluid resuscitation.
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Fig. 1. Representative example of an ABP signal during this experiment. LZC was evaluated on the ABP signal before injury (“before”), during hemorrhagic
shock after injury (“during”), and after fluid resuscitation (“after”), using a moving window of 10 s. Bottom plot shows the estimated PPV using a commercial
monitoring system (PICCO®). Five “gold standard” PPV manual annotations calculated by trained experts during periods of abrupt ABP changes are shown as
black squares.

IV. RESULTS

LZC was evaluated on the high-pass filtered ABP signal using a
moving window of 10 s to guarantee that the LZC estimate was based
exclusively on the ABP pulse morphology and not on the mean ABP.
Mean LZC values of ABP segments were obtained from the 18 sub-
jects before injury, during hemorrhagic shock after injury, and after
fluid resuscitation. The mean LZC was higher in the region immedi-
ately following the Grade V liver injury [ ; mean
standard deviation (SD)] than during the stable region preceding in-
jury and the recovering period after fluid resusci-
tation . Both the mean increase in LZC from the
state of normal ABP (stable region) to the severed blood loss region,
and the reduction in LZC following fluid resuscitation were determined
to be statistically significant using the multiple comparisons Sheffé’s
procedure . There were no statistically significant differ-
ences in LZC between stable region and recovering region following
fluid resuscitation [ , not significant (NS)]. More-
over, receiver operating characteristic (ROC) curves were used to as-
sess the ability of our method to identify baseline, hemorrhagic shock,
and recovery periods. Mean LZC values, obtained for the 10-min win-
dows immediately before injury, during hemorrhagic shock, and after
fluid resuscitation, were used in this statistical analysis. A ROC curve
was applied to our complexity results in order to evaluate the ability of
LZC in discriminating severed blood loss region from the recovering
period. Specificity and sensitivity values of 100% were achieved with
a 0.23 optimum threshold, indicating that all mean LZC values from
the region during hemorrhagic shock after injury are higher than those
obtained after fluid resuscitation. Another ROC analysis was used to

determine the optimum threshold between baseline and hemorrhagic
shock regions. We obtained an accuracy of 100% at a 0.23 cutoff point
(100% sensitivity, 100% specificity).

The top plot of Fig. 1 shows an example of the ABP signals analyzed
in this study. In this figure, we indicate examples of the 10-min ABP
segments used for analysis. The bottom plot shows PPV estimated with
a commercial monitoring system (PiCCO® Pulsion Medical Systems,
Munich, Germany). The PiCCO® physiological monitor has been used
extensively in research studies for hemodynamic monitoring [12], [15].
Additionally, we plot the gold-standard PPV manually annotated by
trained experts at five time instances during the period of abrupt hemo-
dynamic changes. These expert manual annotations (black squares in
the figure) provide a “gold standard” for algorithm comparison and
validation. Fig. 1 shows that PPV assessed by the PiCCO® system per-
formed well in regions of normal hemodynamic changes. However, the
algorithm failed to accurately estimate the PPV during the periods be-
tween the injury and fluid resuscitation, and consequently it failed to
predict fluid responsiveness during the periods of severe blood loss.
Table II details LZC values, PPV PiCCO®, and PPV manual annota-
tions calculated by trained experts, before injury, during hemorrhagic
shock after injury, and after fluid resuscitation.

Pearson’s linear correlation coefficient has been used to compare the
performance of PiCCO® system and our method. Pearson’s coefficient
between PPV annotations by trained experts and mean LZC values
(0.667) is higher than the coefficient obtained between PPV manual
annotations and PiCCO® system results (-0.425), indicating that our
method based on LZC works better than PiCCO® system in the de-
termination of PPV during regions of abrupt hemodynamic changes.



800 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 2, FEBRUARY 2008

TABLE II
LZC VALUES (LZC), PPV PICCO AND PPV MANUAL ANNOTATIONS CALCULATED BY TRAINED EXPERTS AT BASELINE (BASELINE),

DURING INJURY AFTER THE BLEEDING STOPPED (BLEED STOP), AND AFTER POSTRESUSCITATION (POST RESUS)

These results suggest that while the PiCCO® system is a useful tool
to estimate PPV and predict fluid responsiveness in situations where
normal hemodynamic changes are expected, it may not provide accu-
rate PPV values in certain situations involving abrupt hemodynamic
changes. These results also demonstrate that despite its simple defi-
nition, PPV is a difficult parameter to estimate automatically. On the
other hand, LZC can be calculated directly using a simple well-defined
computational algorithm and our results indicate that it may be useful
as a dynamic parameter to assess fluid responsiveness.

V. DISCUSSION

We analyzed ABP signals during periods of abrupt hemodynamic
changes caused by severe blood loss from Grade V liver injury in 18
anesthetized mechanically ventilated animal subjects. We estimated the
LZC from these ABP signals before injury, immediately following in-
jury (during hemorrhagic shock), and after fluid resuscitation. Our re-
sults showed that LZC of ABP increased as subjects progressed from a
stable state of normal hemodynamics to severe blood loss .
Moreover, we found a statistical significant decrease in LZC following
fluid resuscitation . As shown in the top plot of Fig. 1, the
results of our study also showed that spontaneous elevation in mean
blood pressure following cessation of hemorrhage occurred following
the injury.

LZC is related to the number of distinct substrings and the rate of
their recurrence along the given sequence, with larger values corre-
sponding to more complexity in the data. Based on our simulation
studies involving LZC, the LZC can be interpreted as a metric that
quantifies the bandwidth of the signal harmonics [10]. Thus, increases
in LZC after an induced injury involving blood loss and hemorrhagic
shock correspond to an increase in the stochastic variability of ABP
signals. LZC is higher in amplitude modulated quasi-periodic signals
such as ABP during regions of severe pulse pressure changes due to
respiration. LZC can capture directly the additive, amplitude modula-
tion, and frequency modulation respiratory effects on ABP. Respiratory
changes in ABP have been shown to have clinical use for hemodynamic

monitoring to predict fluid responsiveness in mechanically ventilated
patients in a variety of critical conditions [12]–[14].

Our preliminary results indicate that LZC may be used as a dynamic
parameter to predict fluid responsiveness and to perform hemodynamic
monitoring. LZC may be related or be complementary to other estab-
lished dynamic parameters such as PPV or SVV. A potential advantage
of LZC over PPV and SVV is that can be calculated directly from the
ABP signal using a simple well-defined computational algorithm. On
the other hand, automatic estimation of PPV and SVV requires the use
of sophisticated algorithms [16].

Some limitations of our research work merit consideration. First, our
study was conducted analyzing data already collected (i.e., retrospec-
tive data). Moreover, fluid responsiveness has not been investigated.
Thus, future research includes designing and conducting a prospective
study to determine the positive and negative predictive value of LZC
as a dynamic parameter to estimate fluid responsiveness, and to study
the relationship between PPV, SVV, and LZC. If the predictive power
of LZC is comparable to that of PPV or if PPV can be estimated from
LZC analysis of ABP in mechanically ventilated subjects, then LZC
would be an ideal dynamic parameter for bedside hemodynamic mon-
itoring, because it can be easily calculated.
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DCT-Based Complexity Regularization
for EM Tomographic Reconstruction

Max Mignotte*, Jean Meunier, and Jean-Paul Soucy

Abstract—This paper introduces a simple algorithm for tomographic re-
construction based on the use of a complexity regularization term. The reg-
ularization is formulated in the discrete cosine transform (DCT) domain
by promoting a low-noise reconstruction having a high sparsity in the fre-
quency domain. The resulting algorithm simply alternates between a max-
imum-likelihood (ML) expectation-maximization (EM) update and a de-
creasing sparsity constraint in the DCT domain. Applications to SPECT
reconstruction and comparisons with a classical estimator using the best
available regularization terms are given in order to illustrate the potential
of our reconstruction technique.

Index Terms—Discrete cosine transform (DCT), expectation-maximiza-
tion (EM), reconstruction, SPECT tomography.

I. INTRODUCTION

A major challenge for Bayesian image reconstruction algorithms is
the design of efficient image prior models summarizing the intrinsic
properties of the object being evaluated. This allows to restrict the types
of reconstructions (a priori) defined as acceptable solutions.

Except for wavelet-based regularization methods, little attention has
been given to the use of complexity-based regularization in Bayesian
tomographic reconstruction. Wavelet-based methods exploit the spar-
sity of the wavelet coefficients by using either prefiltering of the ac-
quired raw-data [1], postfiltering of the reconstructed images [2], [3],
or a regularization strategy during the optimization process, using a
maximum a posteriori (MAP) formulation [4]–[6].

In such a framework, the simple discrete cosine transform (DCT)
could also be used to constrain the problem of reconstruction from pro-
jections. As opposed to the widely used wavelet transform, this trans-
form can be used locally, by using a strategy of local filtering on (over-
lapping) individual blocks. Therefore, this local filtering approach also
allows to take into account, indirectly, the nonstationarity property of
the object being reconstructed.

What we propose in this paper is a simple and efficient, DCT-based
reconstruction method which alternates between a maximum-likeli-
hood (ML) EM update and DCT-based filtering, using an easily im-
plemented decreasing thresholding rule. The potential of this recon-
struction technique will be illustrated through a series of examples re-
constructed both with this approach and a more classic estimator using
the best available regularization terms.

II. BAYESIAN TOMOGRAPHIC RECONSTRUCTION

Reconstructing an emission tomography study can be considered in a
statistical framework where we consider a pair of random fields ,
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