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Abstract We analyzed intracranial pressure (ICP) signals

during periods of acute intracranial hypertension (ICH)
using the Lempel–Ziv (LZ) complexity measure. Our

results indicate the LZ complexity of ICP decreases during

periods of ICH. The mean LZ complexity before ICH was
0.20 ± 0.04, while the mean LZ complexity during ICH

was 0.16 ± 0.03 (p < 0.05). The mean decrease of the LZ
complexity values during the ICH episodes was 19.5%.
Additionally, we present preliminary evidence suggesting

that periods of ICH may be detectable from non-invasive

signals coupled with ICP, such as pulse oximetry (SpO2).
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Abbreviations
ApEn Approximate entropy
ABP Arterial blood pressure

CAR Cerebral auto-regulation

HRV Heart rate variability
ICH Intracranial hypertension

ICP Intracranial pressure

LZ Lempel–Ziv

TBI Traumatic brain injury

SpO2 Pulse oximetry

1 Introduction

Intracranial pressure (ICP) monitoring and management

has substantially improved the outcome of patients with

traumatic brain injury (TBI). TBI is one of the leading
causes of death and disability in the United States [6].

Periods of intracranial hypertension (ICH) following TBI

often result in secondary injury due to decreased cerebral
perfusion pressure and cerebral ischemia [6]. Current ICP

therapy is based predominantly on the mean ICP and the

ICP pulse morphology. Generally, intervention to lower
mean ICP is undertaken when it surpasses a certain

threshold (usually 20 mmHg) [10]. Taken alone, however,

the mean ICP offers insufficient insight regarding the
underlying physiological mechanisms that drive brain

compliance and cerebral autoregulation (CAR) [3, 12] and

determining ways to obtain such knowledge remains a
significant research goal. Several researchers have deve-

loped indices derived from the ICP pulse morphology [2, 4,

5, 12].
This study provides further evidence suggesting that

measures of ICP complexity decrease during acute epi-

sodes of ICH. Previous results showed that Approximate
Entropy (ApEn) decreases during ICH [7, 8]. We analyzed

ICP signals during ICH periods using the Lempel–Ziv (LZ)
complexity measure. LZ complexity is a nonparametric
measure of complexity for one-dimensional signals related

to the number of distinct substrings (i.e. patterns) and the

rate of their occurrence along a given sequence [9, 11].
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This metric of complexity was originally designed to

evaluate the randomness of finite sequences, and has been
extensively used to solve information theoretic problems

such as coding and lossless data compression. In recent

years, LZ complexity has been applied extensively in bio-
medical signal analysis as a metric to estimate the com-

plexity of discrete-time physiologic signals [13–17].

Additionally, we report preliminary results suggesting that
periods of ICH may be detected by analysis of other non-

invasive physiologic signals coupled with ICP, such as
pulse oximetry (SpO2).

2 Materials and methods

2.1 Signals

This study included 14 ICP signals containing ICH epi-

sodes obtained from seven patients with brain injury

admitted to the Intensive Care Unit at Doernbecher Chil-
dren’s Hospital. All the signals were acquired using a

Philips Merlin monitor. LZ complexity was applied to 12 of

the 14 ICP signals. In the other two signals the period of
ICH was analyzed by applying LZ complexity to SpO2

signals recorded simultaneously with the ICP signals, since

these ICP signals contained regions of artefacts where part
of the ICP signal was lost due to saturation (i.e. the signal

was clipped), and was not available for direct analysis. The

requirement for informed consent was waived. Patient
management guidelines and criteria for ICH detection have

been previously reported [8].

2.2 Lempel–Ziv (LZ) complexity

LZ complexity analysis is based on a coarse-graining of the

measurements. Before calculating the LZ complexity

measure c(n), the signal must be transformed into a finite
symbol sequence. In the context of biomedical signal

analysis, typically the discrete-time biomedical signal x(n)
is converted into a binary sequence. By comparison with a
threshold Td, the original signal samples are converted into

a 0–1 sequence P = s(1), s(2),..., s(n), with s(i) defined by:

sðiÞ ¼ 0 if xðiÞ\Td
1 if xðiÞ % Td

!
ð1Þ

We used the median as the threshold Td because of its

robustness to outliers [11]. Previous studies [13, 16, 17]

have shown that 0–1 conversion is adequate to estimate the
LZ complexity in biomedical signals.

To compute LZ complexity, the sequence P has to be

scanned from left to right and a complexity counter c(n) is
increased by one unit every time a new subsequence of

consecutive characters is encountered. The detailed algo-

rithm to estimate c(n) can be found in [1, 16, 17].
In order to obtain a complexity measure which is

independent of the sequence length, c(n) should be nor-

malized. In the case of a 0–1 sequence, c(n) can be nor-
malized as follows [16]:

CðnÞ ¼ cðnÞ
n

log2ðnÞ
ð2Þ

C(n), the normalized LZ complexity, reflects the arising

rate of new patterns along with the sequence, capturing its
temporal structure. Larger values correspond to more

complexity in the sequence.

3 Results and discussion

Figure 1 shows the results of the LZ complexity evaluated

on detrended ICP signals using a moving window of 10 s

with 90% overlap for 4 of the 12 analyzed episodes. The
ICP signals were high-pass filtered with a cut-off frequency

of 0.5 Hz to eliminate the mean (i.e. trend) prior to the

computation of LZ complexity. Generally, the LZ com-
plexity of ICP decreased as subjects progressed from a

stable state of normal ICP to a state of acutely elevated
ICP. We estimated the average LZ complexity before ICH

and during ICH in the 12 episodes. The mean LZ com-

plexity before ICH was 0.20 ± 0.04, while the mean LZ
complexity during ICH was 0.16 ± 0.03. To take into ac-

count the correction for multiple samples from the same

patients, we calculated the mean LZ complexity value of
ICP before and during ICH episodes from each of the seven

patients. Then, we applied the Student’s t test, which

showed that the decrease in LZ complexity of ICP during
the ICH episodes was significant (p < 0.05). Moreover, the

average decrease of the LZ complexity values during the

ICH episodes was 19.5%.
Our results provide further evidence to indicate that

decreased complexity of ICP coincides with episodes of

ICH in TBI. Furthermore, these results are consistent with
those of our previously published study involving the

analysis of ICP during ICH using ApEn [7, 8]. The average

normalized ApEn before ICH was 0.52 ± 0.01, while the
mean normalized ApEn during ICH was 0.39 ± 0.08. The

average decrease of ApEn during the ICH episodes was

25%. Both ApEn and LZ complexity decreased signifi-
cantly during ICH episodes, although the reduction was

higher with ApEn. Thus, these results show that the

decreased complexity and irregularity of ICP signals
coincide with periods of ICH.

These findings suggest that the complex regulatory

mechanisms that govern ICP are disrupted during acute
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rises in ICP. Acute ICH is a result of failure of normal

cerebral autoregulatory mechanisms to compensate for
overwhelming changes in cerebral volume (haemorrhage

or oedema), external pressure (depressed skull fractures),

cerebral blood volume (cerebral hyperperfusion), or cere-
bral spinal fluid (obstructive hydrocephalus). Thus, we can

speculate that, similar to sepsis, the ICP waveform exhibits

diminished complexity and increased regularity during
periods of ICH when CAR has failed. Conversely, when

CAR is intact, the ICP is more complex and irregular.
However, further work must be carried out to check if LZ
complexity and ApEn of the ICP waveform might provide

an indirect measure of CAR.
Decreased complexity during ICH has very important

implications, since there are several physiologic signals

closely coupled with the ICP signal where decreased LZ
complexity may also be detectable. Consequently, it may be

possible to estimate the mean ICP or detect periods of ICH

by monitoring the LZ complexity of other physiologic sig-
nals such as arterial blood pressure (ABP) and, potentially,

SpO2. Figure 2 shows two ICP signals, the corresponding

SpO2 signals recorded simultaneously with each ICP sig-
nal, and the LZ complexity calculated on each SpO2 signal.

Note that the LZ complexity evaluated from the SpO2 signal

decreases during periods of ICH. This result has tremendous
significance and practical consequences, since it suggests

that it may be possible to manage ICP based on noninvasive

signals such as SpO2 in situations where the ICP signal
cannot be obtained.

In Fig. 2b the result is particularly promising, since it is

impossible to detect any changes in the SpO2 signal by
visual inspection or basic signal analysis. Decreases in LZ
complexity during ICH might correspond to a decrease in

the stochastic variability of the cardiac component, or a
decrease in heart rate variability (HRV).

Based on our simulation studies involving LZ com-

plexity, in the case of pressure signals such as ICP, ABP,
and SpO2, the LZ complexity measure can be interpreted as

a metric that quantifies the bandwidth of the signal har-

monics [1]. Thus, decreases in LZ complexity during ICH
may correspond to a decrease in the stochastic variability

of the cardiac component, or a decrease in HRV. Based on

our simulation study [1] and the present work, we conclude
that values of LZ complexity in pressure signals typically

range from 0.05 to 0.3. A value close to 1 corresponds to a

signal with full bandwidth (i.e. an uncorrelated stochastic
process). Values of LZ complexity around 0.05 correspond

to periodic signals, and values around 0.2 correspond to

quasi-periodic signals with variable harmonics [1]. The
results of this study serve to provide further evidence to

previous published results involving ApEn analysis of ICP

during ICH, and as preliminary results suggesting the

Fig. 1 Representative results showing four ICP signals and the
corresponding LZ complexity during periods of ICH. These results
indicate that decreased LZ complexity of ICP coincides with ICH
episodes in TBI
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possibility of detection of ICH episodes by monitoring the
LZ complexity of noninvasive signals such as SpO2.

However, the full development of an ICH detection algo-

rithm based on analysis of SpO2 signals still requires fur-
ther research.

Future lines of research involve the collection of a large

database containing simultaneously recorded ICP and
SpO2 signals free of artefacts during periods of increased

ICP and ICH, and the replication of this study to scienti-

fically assess the feasibility of these preliminary results.

4 Conclusions

We studied episodes of acute ICH in subjects with brain
injury and found that the LZ complexity of ICP decreases

during ICH. This result agrees with previous research

involving ApEn analysis of ICP during periods of ICH.
Furthermore, we reported promising preliminary results

that suggest that it may be possible to detect periods of ICH

by monitoring the LZ complexity of noninvasive signals

such as SpO2. This finding has relevant implications and
should be further investigated.
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