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Abstract—We analyzed time series generated by 20 schizo-
phrenic patients and 20 sex- and age-matched control subjects
using three nonlinear methods of time series analysis as test
statistics: central tendency measure (CTM) from the scatter plots
of first differences of data, approximate entropy (ApEn), and
Lempel-Ziv (LZ) complexity. We divided our data into a training
set (10 patients and 10 control subjects) and a test set (10 patients
and 10 control subjects). The training set was used for algorithm
development and optimum threshold selection. Each method was
assessed prospectively using the test dataset. We obtained 80%
sensitivity and 90% specificity with LZ complexity, 90% sensi-
tivity, and 60% specificity with ApEn, and 70% sensitivity and
70% specificity with CTM. Our results indicate that there exist
differences in the ability to generate random time series between
schizophrenic subjects and controls, as estimated by the CTM,
ApEn, and LZ. This finding agrees with most previous results
showing that schizophrenic patients are characterized by less
complex neurobehavioral and neuropsychologic measurements.

Index Terms—Approximate entropy, central tendency measure,
Lempel-Ziv complexity, random rhythms, schizophrenia.

I. INTRODUCTION

SCHIZOPHRENIA is a severe mental illness that often
shows a variety of symptoms affecting thought, language,

perception, and behavior. Increasing attention to cognitive
disorders in schizophrenic patients is also being observed.
The most consistent finding appears to be verbal memory
impairment [1]. Although clinical, neuropsychological, neuro-
physiological and neuroimaging approaches have contributed to
a better understanding of the illness, a more precise knowledge
of the underlying mechanisms is still necessary.

In the last two decades, nonlinear methods have been applied
to biological functions in order to analyze psychiatric disorders
including schizophrenia. For example, some authors [2]–[4]
studied electroencephalogram (EEG) signals of schizophrenic
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patients and control subjects with nonlinear methods of time
series analysis. Their results showed differences in the dynamic
processes underlying the EEG signal between schizophrenic
patients and control subjects. In order to assess the working
hypothesis that schizophrenia might be viewed as a dynamical
disease, other authors examined the long-term dynamics of 14
patients [5]. In this study, the data consisted of daily rating of
psychopathology observed for 200 or more consecutive days
for each subject, and results were based on two nonlinear fore-
casting approaches combined with the surrogate data method
to enable statistical testing. The results of the classification of
dynamics showed evidence that a large proportion of schizo-
phrenic psychoses showed nonlinear time courses [5]. In an
interesting and little-known test named the random number
generation [6], subjects were asked to choose several times a
number from one to ten. Numbers had to lack a generative rule,
that is, to be as random as possible. The authors found that
schizophrenic patients tended more to repetition, and therefore
performed worse than normal subjects. Other authors [7] have
carried out a simple choice task consisting in predicting 500
random right or left appearances of a stimulus, in order to
obtain binary response in patients with schizophrenia and con-
trol subjects. Applying mutual and cross-mutual information
they found that the response sequences generated by patients
exhibited a higher degree of interdependency than those of con-
trol subjects. Structural brain changes [8] and rhythmic finger
oscillations in schizophrenic patients [9] have also been studied
using nonlinear methods. In addition, some authors [10], [11]
developed computer programs to study random generation
behaviors. Finally, schizophrenia may be seen as a dynamical
disease due to the abnormal spatial or temporal dynamics of
the overall system [12].

Focusing on a particular feature, the ability to create random
rhythms, the objective of our study is to analyze the cogni-
tive performance of patients with schizophrenia, and compare
it with the cognitive performance of healthy subjects. We de-
veloped a new cognitive test with the objective of measuring
the subjects’ capacity of developing random rhythms: the test of
random rhythm generation (ARG), which was presented in [13]
and [14] and has been registered at the University of Valladolid,
Spain. A random rhythm of blows, without an evident rule for
its generation, appears to be an irregular process. This task hy-
pothetically requires a certain level of mental ability. Conse-
quently, generation of random rhythms must be understood as a
“normal” performance. On the contrary, a stable rhythm, formed
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by a regular sequence of blows, has a rule for its generation that
should be easy to find. The latter is associated more with a loss
of mental ability and therefore must be considered as a “patho-
logical” performance. In order to prove that individual’s ability
to create random sequences is associated with a high neuropsy-
chological performance, we have assessed this ability in schizo-
phrenic patients by means of the ARG.

Assessment of repetition of rhythms is included in other neu-
ropsychological batteries, as the Luria battery and the Neuro-
logical Evaluation Scale [15]. Indeed, the “rhythm tapping test”
of the previous Scale consists in asking the subject to reproduce
exactly the series of taps heard while keeping the eyes closed.
In the present study, we apply three nonlinear methods as test
statistics to analyze time series generated by 20 schizophrenic
patients and 20 sex- and age-matched control subjects, divided
in a training set and a test set. These methods are the following:

• computation of the central tendency measure (CTM) from
scatter plots of first differences of the data;

• the approximate entropy (ApEn);
• the Lempel-Ziv (LZ) complexity.

II. SUBJECTS

Twenty patients with schizophrenia and twenty sex- and age-
matched control subjects were tested. The patients, 15 (75%)
men and 5 (25%) women with a mean age of ,
were diagnosed according to DSM-IV criteria [16]. They were
recruited from the Department of Psychiatry at the University
Hospital of Valladolid, Spain. Inclusion criteria were: 1) age be-
tween 16 and 55 years; 2) history of prior hospital admission(s);
3) no psychotic episodes during the last year; 4) no mental re-
tardation or other cerebral disorders. All patients of the schizo-
phrenic group (SG) were living at home and on ambulatory
treatment, 15 were receiving neuroleptics, mainly middle doses
of haloperidol or risperidone. Neuroleptic treatment during the
last month was converted into equivalents of chlorpromazine;
the mean daily dose was . Twelve patients
suffered from paranoid schizophrenia (60%), six were residual
schizophrenics (30%), and two patients had an undifferentiated
type (10%).

In addition, a control group (CG) of 20 sex- and age-matched
subjects lacking past or present psychiatric history was tested.
They were all healthy volunteers with good disposition to take
part in the study. There were 15 men (75%) and 5 women (25%)
with a mean age of . All the patients and con-
trol subjects had right-hand dominance. Informed consent was
obtained from all subjects.

In the SG, psychopathological assessment at the time of
performing the ARG was carried out by means of the positive
and negative syndrome scale (PANSS) [17] and the Frankfurt
Complaint Questionnaire [Frankfurter Beschwerde-fragebogen
(FBF)] in its third version [18]. The same experienced psy-
chiatrist, who was blind to the results and analysis performed
with the ARG test carried out all the clinical assessments.
While the PANSS objectively collects positive and negative
symptoms, the FBF aims at subjectively perceived deficiency
symptoms, also called “basic symptoms.” A certain degree
of patients’ cooperation is necessary to fulfill the FBF and

perform the ARG, what is usually achieved within a few days
of hospitalization. Psychopathologic symptoms at this phase
were assessed by means of the PANSS. Patients were receiving
neuroleptic treatment, which was converted into equivalents of
chlorpromazine. In summary, the average type of patient is a
man of 30.8 years old, suffering from a paranoid schizophrenia
during the last 11.3 years. His psychopathological picture
includes positive, negative and basic symptoms (see scores
in PANSS-P, PANSS-N, and FBF). He was receiving 192.5
mg/day of chlorpromazine.

We divided our data into a training set and a test set. The
training set was used to develop the algorithm (i.e., to choose
the radius in the CTM method, and in ApEn) and to select
the optimum thresholds for each method. The final algorithm
was then applied without further alteration to the data from the
test set. In the training set, we included 10 patients (3 women
and 7 men) and 10 sex- and age-matched control subjects with
a mean age of , while in the test set there were
10 patients (2 women and 8 men) and 10 sex- and age-matched
control subjects with a mean age of . In both
the training and the test set, six patients suffered from paranoid
schizophrenia (60%), three were residual schizophrenics (30%),
and one had an undifferentiated type (10%). Results obtained
in the psychopathological scales and sociodemographic data di-
vided in training set and test set are summarized in Table I.

III. METHODS

A. Test of Random Rhythm Generation (ARG)

This study is aimed at analyzing time series generated by
schizophrenic patients and healthy subjects. To generate these
time series, the subject is asked to press the space bar of the
computer as irregularly as possible [13], [14]. If possible, the
test is performed in an ordinary examination room, the com-
puter being placed at a side of the table. A natural light pro-
jected on the computer was preferred. Interruptions during the
exploration or pressure of time must be avoided. The doctor in
charge holds a short interview with the patient in order to check
his/her present mental state as well as the level of motivation
and cooperation to perform the test. If the interviewer judges
them satisfactory, the patients must sit in front of the computer
and be able to perfectly see the screen. The interviewer first asks
which hand he/she normally uses and checks that the patient is
able to press comfortably the space bar with his/her dominant
hand. Then the following instruction is given: “This is a simple
test with a computer. You must press this key – and shows the
space bar – with a finger at a rhythm as irregular as possible
during some time, until the screen indicates the end of the task.
First, you are going to see an example.” The computer shows an
example, consisting of a square of 4 4 cm, which appears and
disappears in the screen at an irregular rhythm. The presence
of the square in the screen is accompanied by a beep. The in-
terviewer repeats that this was only an example and that he/she
must try to do it as irregular as possible. The subject performs
now a sequence consisting of a sequence of blows. Once the
patient has completed 128 blows, the program stops and asks
about a second sequence. The interviewer inquires the patient
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TABLE I
SOCIODEMOGRAPHIC DATA AND RESULTS OBTAINED IN THE PSYCHOPATHOLOGICAL SCALES WITH THE SCHIZOPHRENIC GROUP

DIVIDED IN A TRAINING SET AND A TEST SET

how difficult he/she has found the task and checks if the sub-
ject has understood the task to perform. Usually, only one trial
is necessary; then the last sequence is proposed to be analyzed.
The sequence points are the time intervals between blows in mil-
liseconds. Thus, the th data point represents the time interval
between the th and the th blow.

One of the key points in this and similar tests is the optimum
length of time series. We dealt with it in a previous paper [13].
We needed long series to achieve a good estimation with several
methods, but if the series were too long, results could be wrong
because generating long random series is a very hard and tiring
task. We analyzed time series of several lengths (1024, 512, 256,
128, 64) and found that series longer than 128 points were more
regular at the end than at the beginning. This suggests that re-
sults might be distorted due to subjects’ tiredness, affecting both
patients and controls. Therefore, we decided to use series of 128
points.

In the next subsections, we explain the applied methods to
analyze the time series generated by the patients and controls.

B. Central Tendency Measure (CTM)

We can produce graphs using scatter plots of differences of
the data

(1)

Scatter plots of first differences centered around the origin are
useful in modeling biological systems such as hemodynamics
and heart rate variability, and represent the degree of theoretical
chaos [19]. With this approach, rather than defining a time series
as chaotic or not chaotic, the degree of variability or chaos is
evaluated.

We use the CTM with scatter plots of first differences of the
data. The CTM is computed by selecting a circular region of
radius around the origin, counting the number of points that
fall within the radius, and dividing by the total number of points.
Given data points from a time series, would be the
total number of points in the scatter plot. Then, the CTM can be
computed as [20]

(2)

where

if

otherwise
(3)

The radius is chosen depending upon the character of the data.
We have developed a new method to select the radius. First, we
compute the CTM with several radii of the time series generated
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Fig. 1. Student’s t-test p-values obtained with the different CTM computations
from the time series generated by 10 schizophrenic patients and 10 sex- and
age-matched control subjects in the training set using several radii �.

by 10 schizophrenic patients and 10 sex- and age-matched con-
trol subjects from the training set. Then, we apply the Student’s
t-test to calculate which of the radii in the training set achieves
the most significant differences between time series generated
by schizophrenic and control subjects. The result of this process
is shown in Fig. 1. We noticed that we could select the radius
from a large set of radii in which the differences between the
CTM values of the time series generated by both groups are sig-
nificant ( ). The best radius was estimated at
( ).

C. Approximate Entropy (ApEn)

Approximate entropy (ApEn) is a family of statistics intro-
duced as a quantification of regularity in the data without any
a priori knowledge about the system generating them. Pincus
first proposed it in 1991 [21], initially motivated by applica-
tions to short and noisy data sets. ApEn has been mainly used
in the analysis of heart rate variability [22], endocrine hormone
release pulsatility [23], in the characterization of postoperative
ventricular dysfunction [24] and the impact of pulsatility on
the ensemble orderliness of neurohormone secretion [25]. It has
also been applied to extract features from electroencephalogram
(EEG) and respiratory recordings of a patient during Cheyne-
Stokes respiration [26], to predict epileptic seizures from EEG
time series [27] and to quantify the depth of anesthesia [28].

ApEn is scale invariant and model independent, evaluates
both dominant and subordinant patterns in data, and discrimi-
nates series for which clear feature recognition is difficult. No-
tably it detects changes in underlying episodic behavior not re-
flected in peak occurrences or amplitudes [29]. It is nearly un-
affected by low level noise, it is also robust to meaningful infor-
mation with a reasonable number of data points and is finite for
both stochastic and deterministic processes [28]. ApEn assigns
a nonnegative number to a time series, with larger values corre-
sponding to more complexity or irregularity in the data. It has
two user-specified parameters: a run length and a tolerance
window . Briefly, ApEn measures the logarithmic likelihood
that runs of patterns that are close (within ) for contiguous
observations remain close (within the same tolerance width )

on subsequent incremental comparisons. It is important to con-
sider – or , where is the number
of points of the time series – as a family of characterizing mea-
sures: comparisons between time series can only be made with
the same values of and [30].

Formally, given data points from a time series
, to compute ApEn, one

should follow these steps [30].

1) Form -vectors defined by:
,

. These vectors represent consecutive values,
commencing with the th point.

2) Define the distance between and ,
, as the maximum absolute difference

between their respective scalar components, i.e., the
maximum norm

(4)

3) For a given , count the number of (
, ) so that , denoted as
. Then, for

(5)

measures, within a tolerance , the frequency of
patterns similar to a given one of window length .

4) Compute the natural logarithm of each , and
average it over

(6)

5) Increase the dimension to . Repeat steps 1) to 4) and
find and .

6) We define ApEn by

(7)

As suggested by Pincus [30], for the study discussed in this
paper ApEn is estimated using the widely established param-
eter values of , , and , 0.15, 0.2, and 0.25
times the standard deviation (SD) of the original data sequence

. Normalizing in this manner gives ApEn a translation
and scale invariance, in that it remains unchanged under uniform
process magnification, reduction, or constant shift to higher or
lower values [30]. Several studies [21], [29], [31] have demon-
strated that these input parameters produce good statistical re-
producibility for ApEn with time series of length , as
considered herein.

D. Lempel-Ziv (LZ) Complexity

The LZ complexity measure for sequences of finite length
was suggested by Lempel and Ziv [32]. It is a nonparametric,
simple-to-calculate measure of complexity in a one-dimen-
sional signal that does not require long data segments to
compute [33]. LZ complexity is related to the number of dis-
tinct substrings and the rate of their recurrence along the given
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sequence [27]. It has been applied to study the brain function
[34], brain information transmission [35], ECG dynamics [36],
and epileptic seizures [27]. Others authors have used LZ com-
plexity to detect ventricular tachycardia and fibrillation [33],
to predict movement in anesthesia in animals [37], to estimate
the depth of anesthesia [28], [38] and to quantify oscillations in
uterine electromyography [39].

LZ complexity analysis is based on a coarse-graining of the
measurements, so before calculating the complexity measure

, the signal must be transformed into a finite symbol se-
quence. In this study, the simplest way is selected to convert
time series values ( , ) into a sequence of
characters (zero and one). The mean value is estimated as a
threshold . By comparison with the threshold, the signal data
are converted into a 0–1 sequence : if

, , otherwise [38]. Previous studies
[27], [34]–[37] show that 0–1 conversion is enough to study the
dynamic complexity of a system. The sequence is scanned
from left to right and the complexity counter is increased
by one unit every time a new subsequence of consecutive char-
acters is encountered. The complexity measure can be estimated
using the following algorithm [28], [33], [38].

1) Let and denote two subsequences of and be
the concatenation of and , while sequence is de-
rived from after its last character is deleted ( means
the operation to delete the last character in the sequence).
Let denote the vocabulary of all different subse-
quences of . At the beginning, , ,

, therefore, .
2) In general, , , then

; if belongs to ,
then is a subsequence of , not a new sequence.

3) Renew to be , and judge if belongs
to or not.

4) Repeat the previous steps until does not belong to
. Now is not

a subsequence of ,
so increase by one.

5) Thereafter, is renewed to be
, and .

These procedures have to be repeated until is the last char-
acter. At this time the number of different subsequences in –
the measure of complexity – is .

In order to obtain a complexity measure which is independent
of the sequence length, should be normalized. If the length
of the sequence is and the number of different symbols in the
symbol set is , it has been proved [32] that the upper bound of

is given by

(8)

where is a small quantity and ( ). In general,
is the upper bound of , where the base of the

logarithm is , i.e.,

(9)

For a 0–1 sequence, , therefore

(10)

and can be normalized via

(11)

reflects the arising rate of new patterns along with the
sequence.

IV. RESULTS

We present the results obtained with each of the methods on
the training set and the test set. The training set was used for
algorithm development (i.e., to choose the radius in the CTM
method, and in ApEn) and optimum threshold selection.
Each of the methods was validated prospectively using the test
set.

A. Training Set

1) Central Tendency Measure (CTM): Scatter plots of first
differences of the data for all the time series generated by
schizophrenic patients and control subjects have been calcu-
lated. Fig. 2 shows the scatter plot corresponding to the time
series generated by a schizophrenic patient, whereas the plot
corresponding to the time series generated by a control subject
is illustrated in Fig. 3. Points in the time series generated by
patients have a higher tendency to be located in the center, as
we can notice in Fig. 2. This is reflected by higher CTM values.

In the computations of CTM, the selected radius has a high
dependency. A radius equal to 40 ( ) has been chosen to
achieve the most significant differences in the t-test ( )
with the time series generated by 10 schizophrenic patients and
10 sex- and age-matched control subjects from the training set.
The CTM values in the CG time series are . They
are lower than the values of SG time series (mean value:

).
2) Approximate Entropy (ApEn): has to be

seen as a family of characterizing measures, where is the
number of points in our time series ( ). As suggested
by Pincus [30], we used and and four different
values of : 0.1, 0.15, 0.2, and 0.25 times the standard deviation
(SD) of the data. In Table II, we show the mean ApEn values cal-
culated from the time series generated in the training set with
different values of and . The best results according to the
Student’s t-test are obtained with and times
the SD of the data. measures the
logarithmic frequency with which blocks of length that
are close together remain close together for blocks augmented
by one position (i.e., ). Larger values of ApEn imply
substantial fluctuation, or irregularity, in the time series [30].
Thus, the smaller ApEn values in the time series generated by
the schizophrenic patients imply stronger regularity, or persis-
tence, than in the sequences generated by control subjects.
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Fig. 2. Scatter plot of first differences of the time series generated by a
schizophrenic patient using a circle of radius � = 40.

Fig. 3. Scatter plot of first differences of the time series generated by a control
subject using a circle of radius � = 40.

TABLE II
AVERAGE ApEn(m; r) VALUES ESTIMATED FROM TIME SERIES GENERATED

BY 10 SCHIZOPHRENIC GROUP (SG) AND 10 CONTROL GROUP (CG)
OF THE TRAINING SET USING m = 1 AND m = 2, AND DIFFERENT

VALUES OF r: 0.1, 0.15, 0.2, 0.25 OF THE SD

3) Lempel-Ziv (LZ) Complexity: The average value of LZ is
higher in time series generated by the CG from the training set.
Mean values were in the CG and in the

TABLE III
RESULTS ON DIFFERENT METHODS FROM TIME SERIES GENERATED

BY 10 SG AND 10 CONTROL GROUP (CG) OF TEST SET USING THE

OPTIMUM PARAMETERS (�, m, r) AND OPTIMUM THRESHOLDS OBTAINED

FROM TIME SERIES IN THE TRAINING SET

SG. The differences between both groups are statistically signif-
icant ( , t-test). These results suggest that the com-
plexity (in the sense of number of new subsequences or distinct
patterns contained in the time series) in time series generated by
schizophrenic patients is lower.

4) Optimum Threshold: We selected the optimum threshold
from the training set of the three applied methods by means of
sensitivity, specificity and accuracy. We used a radius equal to
40 in the CTM, and times the SD of the
time series in the ApEn estimation, and two symbols (0–1) with
LZ complexity. We selected different thresholds or cutoff points
(CTM, ApEn, or LZ values) and calculated the sensitivity/speci-
ficity pair for each one of them. Sensitivity – the true positive
rate – is the proportion of schizophrenic patients recognized
by each method, whereas specificity – the true negative rate –
represents the percentage of healthy subjects recognized. Accu-
racy is a related measure that quantifies the number of subjects
correctly classified. The optimum threshold corresponds to the
cutoff point in which the highest accuracy (minimal false nega-
tive and false positive results) is obtained.

In CTM, the optimum threshold is obtained at 0.27 with a sen-
sitivity of 90% and specificity of 60% (accuracy: 75%), while in
ApEn an optimum threshold of 1.43 is selected with 90% sensi-
tivity and 90% specificity (accuracy: 90%). Finally, we estimate
the best threshold at 0.94 in LZ complexity with 80% sensitivity
and 90% specificity (accuracy: 85%).

B. Test Set

Table III summarizes the results from the time series gener-
ated by 10 schizophrenic patients and 10 control subjects of the
test set. We used the parameters chosen from the study of the
training set time series: a radius equal to 40 in CTM,
and times the SD of the time series in ApEn. More-
over, we computed sensitivity and specificity in the test set with
the optimum thresholds obtained with the training set. We can
notice that the highest sensitivity (90%) is obtained with ApEn,
whereas specificity (90%) improved with LZ complexity. The
best accuracy (85%) is obtained with LZ.

V. DISCUSSION

Our findings applying CTM show a diminished variability in
the times series generated by schizophrenic patients in both the
training and the test sets (reflected by the fact that points in the
time series generated by them have a higher tendency to be lo-
cated in the center of the scatter plots). Although patients tend
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to press the space bar more frequently, the differences in the
mean time between blows, the SD and the coefficient of vari-
ability of the time series between both groups were not signifi-
cant ( ). Thus, it seems that CTM reflects differences in
the time series that could not be detected with more conventional
statistical methods. According to ApEn results, we can state that
the rate of new pattern generation in the time series generated
by SG is lower than in those corresponding to CG, a fact also
suggested by their lower LZ complexity values. Thus, all results
show that schizophrenic patients tend to generate more regular
and rhythmic series than control subjects.

We hypothesize that creating a more random rhythm re-
quires a higher cognitive effort than creating a more regular
rhythm. Therefore, our results suggest that schizophrenic pa-
tients have a reduced ability to generate random series when
compared with controls. This fact agrees with findings showing
that schizophrenic patients are characterized by less complex
neurobehavioral and neurophysiologic measurements than
control subjects:

1) in a test of random number generation, consisting in
choosing several times a number between 1 and 10
without any generative rule, schizophrenics tended more
to repetition and therefore performed worse than normal
subjects [6];

2) when performing a listening task they showed a high de-
gree of semantic recurrence in hallucinated “voices” [40];

3) a decreased dimension complexity was found in the EEG
of schizophrenic patients compared to controls [3], [41];
and

4) the EEGs dimensionality during sleep stages II and REM
was reduced in schizophrenia [42].

However, these consistent results, which our data also con-
firm, differ from a finding described by Paulus et al. [43]–[45]
when subjects were asked to predict 500 random right or left
appearances of a stimulus. A basic behavioral dysregulation oc-
curs in a single test session, consisting in both high predictable
and high unpredictable response sequences.

Several objections can be raised against the time series
analysis and the ARG test. The first objection that merits
consideration relates to the use of nonlinear methods in our
study. With CTM, rather than defining a time series as chaotic
or not chaotic, the degree of variability is evaluated [19].
ApEn was constructed by Pincus [21] to provide a widely
applicable, statistically valid formula that will distinguish data
sets by a measure of regularity. It can potentially distinguish a
wide variety of systems: low-dimensional deterministic, periodic
and multiply periodic, high-dimensional chaotic, stochastic and
mixed(stochasticanddeterministic) systems[21].Moreover,one
important feature of LZ complexity is model-independence.
Only those differences between activity patterns that make
a difference to the underlying system itself are considered,
no matter whether the system is dominated by deterministic
chaos or a stochastic process [38]. In our study, the time series
may not be simply generated by a purely deterministic or
stochastic process, but rather by some combination of both.
While applying LZ complexity to the sequences we are not
testing for a particular model form, but attempting to distinguish

among the time series generated by schizophrenic patients and
control subjects on the basis of complexity in the sense of
number of new subsequences or distinct patterns contained in the
time series. Due to model-independence and wide applicability,
rather than trying to find a certain dynamical model for the
time series, we have treated CTM, ApEn, and LZ complexity
as test statistics.

Secondly, due to the usual subjects’ tiredness in performing
the task we had to analyze short time series. It could be argued
that ApEn and LZ complexity are data demanding measures.
Several studies [21], [29], [31] show that the selected ApEn
input parameters values and produce good statistical re-
producibility with time series of length , as considered
herein. LZ complexity is a simple measure that does not require
long data segments to compute [33], although the analyzed time
series might be short.

The third objection which might be considered is if the pa-
tient correctly understands the instruction “press this key with
a finger at a rhythm as irregular as possible.” To assure this, the
computer gives an example; also, the subject has the possibility
of making several trials, and the interviewer must check that the
subject understands the task to perform. However, the moment
of assessment should be carefully selected; the doctor in charge
of the patient should check his/her present mental state.

The fourth drawback is whether the patient is motivated to
perform the test or not. This question arises when applying
most cognitive tests, symptom questionnaires and psychosocial
therapies in schizophrenic patients. It is again the doctor in
charge who must check the degree of motivation and coopera-
tion. The interviewer also tries to enhance them by presenting
the test in an attractive way. Our experience shows that the test
is generally very well accepted by patients, and that the instruc-
tion “This is a simple test with a computer” helps to minimize
any possible patients’ fear or mistrust at the beginning.

The final objection which might be discussed is the pos-
sible influence of neuroleptic medication in the performance
of the ARG. Once the neuroleptic treatment was converted
into equivalents of chlorpromazine, we obtained that patients
of this study were receiving . There-
fore, neuroleptic treatment could effectively account for at least
some part of the results. We certainly believe that the task to
perform—generate random sequences—is not only of a motor
nature, but also includes a high component of executive func-
tions, particularly cognitive flexibility: to get the best results,
the subject has to use different strategies and plan exactly when
he/she is pressing the space bar. Although ideally patients should
be without neuroleptic medication in these kinds of studies,
this is almost a utopia in such a severe disease, at least in our
ordinary work. On the other hand, we have preferred to study
a sample of patients meeting DSM-IV criteria for diagnosis
of schizophrenia. This requires a minimum illness period of 6
months and the presence of social/work dysfunction. However,
this interesting point about the possible influence of medication
requires further investigation and is one of the research lines
we are dealing with. A second research line is the possible
correlation of these nonlinear methods with disorders of higher
level cognitive functions, such as working-memory deficits,
gating disorders or cognitive dysmetria, as suggested in [45].
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To avoid the optimization of all parameters involved
(method/measure parameters and threshold) on the whole data
record, we divided our data into a training set (10 patients and
10 control subjects) and a test set (10 patients and 10 control
subjects). The training set was used to choose the parameters
in each method and to select the optimum thresholds. The
final algorithm was then applied to the data from the test set.
However, further work is now required to test the potential
value of our methodology with a larger data set.

VI. CONCLUSION

In this paper, we have hypothesized that the generation of
random rhythms, that is, irregular sequences lacking an evident
rule for its generation, requires a certain level of mental ability
and must be understood as a “normal” performance. On the con-
trary, regular and rhythmic sequences are hypothetically asso-
ciated with a loss of mental ability and consequently must be
considered as a “pathological” performance.

We developed a new cognitive instrument, which measures
the subject’s capacity to generate random rhythms: the ARG.
It was observed that schizophrenic patients could not generate
time series as random as control subjects. This fact agrees
with findings showing that schizophrenic patients are charac-
terized by less complex neurobehavioral and neurophysiologic
measurements.
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