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Pulse Morphology Visualization and Analysis With
Applications in Cardiovascular Pressure Signals
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Abstract—We present a new analysis and visualization method
for studying the functional relationship between the pulse mor-
phology of pressure signals and time or signal metrics such as heart
rate, pulse pressure, and means of pressure signals, such as arte-
rial blood pressure and central venous pressure. The pulse mor-
phology is known to contain potentially useful clinical information,
but it is difficult to study in the time domain without the aid of
a tool such as the method we present here. The primary compo-
nents of the method are established signal processing techniques,
nonparametric regression, and an automatic beat detection algo-
rithm. Some of the insights that can be gained from this are demon-
strated through the analysis of intracranial pressure signals ac-
quired from patients with traumatic brain injuries. The analysis in-
dicates the point of transition from low-pressure morphology con-
sisting of three distinct peaks to a high-pressure morphology con-
sisting of a single peak. In addition, we demonstrate how the anal-
ysis can reveal distinctions in the relationship between morphology
and several signal metrics for different patients.

Index Terms—Arterial blood pressure (ABP), hemodynamics,
intracranial pressure (ICP), point process, pulse contour analysis,
pulse morphology, pulse pressure, traumatic brain injury (TBI).

I. INTRODUCTION

ARDIOVASCULAR pressure signals such as arterial
Cblood pressure (ABP), intracranial pressure (ICP), central
venous pressure (CVP), and pulmonary arterial pressure (PAP)
are frequently monitored and analyzed in both clinical and
research environments. The mean pressure is the most well
understood and clinically used metric for these signals. The
mean pressure is technically defined as the average pressure
over the duration of one cardiac cycle, though in practice it is
often calculated as either a linear combination of the systolic
and diastolic pressures or a 3-8 s moving window average.

Pressure signals contain much more information than is cap-
tured by the mean, systolic, and diastolic values. Most of this
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information can be extracted from the pulse morphology, which
refers to the shape of a pressure signal over the span of a single
cardiac cycle. In short signal segments, the pulse morphology is
usually consistent, but it is known to change slowly over time.
The short period of the cardiac cycle makes visual inspection
of the morphology over moderate to long time periods (i.e., >1
min) difficult. With arterial blood pressure, short segments (e.g.,
30 s) and a combination of scalar metrics such as the beat dura-
tion, mean pressure, and the areas under the systolic and dias-
tolic portions are used to attempt to quantify the useful char-
acteristic of the morphology on a beat-by-beat basis [1]-[4].
Much of this research, called pulse contour analysis, has pro-
duced new methods of estimating clinically relevant parameters
such as cardiac output, arterial compliance, and systemic vas-
cular resistance [2], [5]-[10].

In most clinical settings, pressure signals are monitored con-
tinuously and at sufficiently high sampling rates to accurately
capture the pulse morphology. Even so, no methodology exists
that allows researchers to analyze how the morphology varies
over moderate to long periods (>>1 min) or to determine the rela-
tionship of pulse morphology to signal metrics such as the mean
heart rate or pulse pressure.

We propose a new methodology, called the morphologram,
that permits researchers to perform detailed visual analysis of
the morphology of pressure signals. Conceptually, our method-
ology creates a family of estimates of the functional relationship
between each point of the pulse morphology and a signal metric
associated with each pulse. This methodology produces a 2-D
image similar to a time-frequency analysis such as the spectro-
gram. Essentially, it presents a “top-down” view of the pulse
morphology as it varies over time or in relation to a signal metric
such as mean pressure, pulse pressure, or heart rate. We demon-
strate the technique with examples of the pulse morphology
variation in ICP signals acquired from pediatric patients with
traumatic brain injuries.

A. Application in Intracranial Pressure

Traumatic brain injury (TBI) is a leading cause of death and
disability in the United States [11]. Elevated ICP is common
in TBI patients and can result in secondary injury due to cere-
bral ischemia [12]-[14]. Although there have been no random-
ized clinical trials, it is generally accepted that continuous mon-
itoring of ICP signals has resulted in improved clinical out-
come [12], [15], [16]. The mean ICP, usually defined as a 3—8
s moving average of the ICP signal, is the most common signal
metric used to guide therapeutic interventions such as hyper-
ventilation or mannitol administration, which tend to lower the
mean ICP. Generally, clinicians intervene when the mean ICP is
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Fig. 1. Example of the ICP pulse morphology becoming more rounded, or sinusoidal, as the mean ICP increases. Peaks labeled are the percussion (P), tidal (T),
and dichrotic (D). (a) Mean ICP = 7.12 mmHg, (b) Mean ICP = 10.1 mmHg, (¢) Mean ICP = 14.7 mmHg, and (d) Mean ICP = 22.5 mmHg.

sustained above some threshold (usually 20 mmHg) [15], [16].
The optimal threshold for treatment undoubtedly varies across
patients.

Other investigators have found that additional information
about the clinical state of the patient, such as the cerebral
compliance or integrity of cerebral autoregulation could be ex-
tracted from the ICP signal [15], [17], [18]. Several researchers
have employed ICP pulse morphology to obtain additional
information [15], [17]-[22]. Unlike most other cardiovascular
pressure signals, the ICP pulse morphology typically contains
three peaks, called the percussion, tidal, and dichrotic peaks,
respectively (Fig. 1). The relative amplitudes of these peaks
and depth of the valleys between them vary considerably across
patients and, in many cases, in recordings from a single patient.

Morphologic changes have long been associated with
changes in the mean ICP. In particular, as the mean ICP
increases the pulse morphology frequently becomes more
rounded, or sinusoidal (Fig. 1). Specifically, the tidal peak
becomes dominant and makes the percussion and dichrotic
peaks indiscernible. Since this often occurs with elevated mean
ICP, the principal gauge of worsening patient condition, the
rounding of the pulse morphology has been explained in the
context of deteriorating mechanisms that control cerebral blood
flow [13], [17], [22]-[25]. In a preliminary study we described
a method for estimating the portion of the morphology that is
independent of the mean ICP [26]. Examples demonstrated

that in some cases the “residual morphology” contained signif-
icant patterns before and after therapeutic interventions, which
suggests some variations in pulse morphology are not solely
dependent on the mean ICP. This supports the hypothesis that
the pulse morphology of ICP contains more information than
can be explained by the mean ICP alone. The physiology and
clinical importance of this transition to rounded morphology,
however, varies over time and across patients, and remains an
open area of research.

A number of ICP signal metrics have been proposed that indi-
rectly estimate intracranial dynamics of interest [15], [17], [19],
[20]. Most of these metrics are scalar parameters designed to
quantify a single property of the ICP pulse morphology. These
indices use methods such as spectral analysis [21], [22], [27]
or pulse slope [22], [24]. Ideally, the additional information in
the pulse morphology will help clinicians select a better course
of therapy than is possible with the mean ICP alone. Devel-
oping methods to extract this information remains a significant
research goal. To aid the development of these methods, anal-
ysis tools are needed that give a complete representation of the
pulse morphology and how it varies with time or signal metrics
of interest.

II. METHODOLOGY

Our method estimates the functional relationship between the
pulse morphology and any scalar predictor variable (i.e., a signal
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Fig. 2. Block diagram for the morphologram analysis algorithm.
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Fig. 3. (a) Segment of detrended ICP signal showing detected beat minima by, and x4(bx + 7) at delay 7 = 0.35 s. (b) Corresponding scatter plot at delay
7 = 0.35 s showing the relative pressure of each pulse against its respective signal metric value (mean ICP in this case). Also shown is the smoothing fit. (c)
Non-smoothed (nearest-neighbor interpolation) pseudo-color image showing expected morphology as a function of mean ICP. (d) Smoothed pseudo-color image
showing expected morphology as a function of mean ICP. Smoothing in (b) corresponds to smoothing across the horizontal white line on the morphologram in (c)
and (d). The total morphologram is constructed from this type of smoothing at each delay, 7.

metric) m by calculating p(7,m), an estimate of the expected
pulse morphology given m at a delay 7 seconds past the onset
of the pulse. The method then creates a pseudo-color image of
p(7,m) (i.e., the morphologram) that depicts the relationship of
the estimated pulse morphology to m, similar in appearance to
time-frequency analysis. The color scale used in the figures is
described in [28]. In this section, we provide precise descrip-
tions of each of the steps used to generate the morphologram.
Fig. 2 shows a general block diagram of the morphologram anal-
ysis algorithm.

A. Event Detection and Pulse Fiducial Points

The morphologram requires the detection of the onset of
each pulse. Any fiducial point could suffice, but in pressure
signals the diastolic minima preceding each pulse (i.e., the
“beat” minima) is convenient because it can be detected easily

and represents the onset of pressure following each cardiac con-
traction. The times of these events are denoted as by, as shown
in the application to an ICP signal [Fig. 3(a)]. We represent
the ordered set of these beat indices as B = {by, ba,...,bn, },
where V;, is the number of beats in the observed signal seg-
ment. Current software programs permit precise and consistent
detection of heart beats even in the presence of arrhythmias or
damped pressure waveforms [29]. For the off-line examples in
this paper we detected the fiducial points with an automatic
beat detection algorithm [30].

B. Signal Metric Association

Obtaining estimates of the pulse morphology given a signal
metric requires associating each pulse with a signal metric, de-
noted my. We describe here how we associate a mean pressure
with each beat. In research applications and the clinical setting
the mean pressure is usually defined to be a moving window
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average of 3-8 s. The purpose of this is to eliminate high fre-
quency fluctuations in the signal due to respiration and the pul-
satile component synchronous with the cardiac cycle. We used
a zero-phase, noncausal elliptic IR lowpass filter with a cutoff
frequency of 0.3 Hz

Z(t) = z(t) * hyp(t) (1)
where x(t) is the pressure signal, Ay p(t) is the impulse response
of the lowpass filter, and * denotes convolution. This filter pro-
duces an estimate of the mean that is similar to a moving av-
erage estimate, but has better attenuation of the respiratory and
cardiac components. Since this is a noncausal filter, this method
is only applicable for off-line analysis. The mean pressure asso-
ciated with each pulse, my, is then computed as the mean pres-
sure at the midpoint between beat minima, mj = Z(tx) where
tr = (bk + bk+1)/2.

C. Removal of Low Frequency Content

The pulse morphology of interest is represented by the re-
peated fluctuations in the pressure signal that occur with con-
tractions of the heart. This signal is nearly periodic with a fun-
damental frequency equal to the heart rate, so the power spec-
tral density of the pulse morphology occurs at frequencies at or
above the heart rate. Other low-frequency content is also present
in z(t) due to baseline drift, respiratory fluctuations, and other
effects, such as A, B, and C waves in ICP signals [31]. We iso-
late the pulse morphology of interest from these low-frequency
components with a highpass filter

:vD(t) = .T(t) * th(t) (2)
where hyp(t) is the impulse response of the highpass filter. We
used a zero-phase, noncausal elliptic IR highpass filter with a
cutoff frequency of 0.3 Hz. Thus, the morphology of the kth
observed pulse is xp (b + 7).

D. Pulse Morphology Estimation

The method creates a functional relationship between the
pulse morphology and the signal metric by estimating the
expected pulse morphology given the signal metric. We create
a family of estimates for fixed values of 7 ranging from O to
the duration of the pulse morphology. For pressure signals, the
pulse morphology duration is defined as the average inter-beat
interval. We model the relationship between the observed
morphologies and the signal metric as

ZI?D(bk-l-T):p(T,mk)-l-Ek 3)

where

p(t,my) = E [wp(by, + 7)|m] “)
is the expected morphology given the observed signal metric,
and ¢ is an independent, zero-mean random variable that
models the variation in 2p (bs 4 7) that cannot be explained by
my. Our goal is to calculate and display p(7,m), an estimate
of the expected pulse morphology given 1.
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Fig. 3(c) shows the un-smoothed pulse morphology zp (bx, +
7) of an ICP signal over all of the observed mean pressure
values. The true relationship between the expected morphology
and the signal metric can be more accurately estimated by ap-
plying a nonparametric regression smoother to estimate p(7, m)
for fixed lags. Smoothing decreases the variance of the estimate
and more accurately depicts the relationship of the pulse mor-
phology to the signal metric. Fig. 3(d) shows the estimated pulse
morphology after smoothing with respect to the signal metric.
Fig. 3(b) shows the smoothing fit across all observed mean pres-
sure values at a fixed lag 7 = 0.35 s.

Any nonparametric method of regression smoothing could
be applied. For the examples in this paper we used a kernel
smoother

_ Sty wn(be + 1) fo (m — ma)
= N

>kt Jo (Im —mi)
where f(-) is a unimodal symmetric density function and o

controls the kernel width. We used a truncated Gaussian kernel
function

p(T,m) (3)

2
1o7 357 <5
folu) =1 o© Jul < ©)
() 0, lu| > 5
where o is 2% of the observed range of m;,
o =0.02 {mﬁx(mk) - mkin(mk) . @)

III. RESULTS AND DISCUSSION

We demonstrate the morphologram on ICP signals acquired
from the Pediatric Intensive Care Unit (PICU) at Doernbecher
Children’s Hospital, Oregon Health and Science University.
First we give an example with several additional plots that
show the performance of the morphologram. Next, we show
six examples of the morphologram applied to ICP signals and
discuss some of the insights that can be gained from this type
of analysis.

A. Supplementary Plots

Fig. 4 shows an example of the morphologram applied to an
ICP signal along with six supplementary plots that can help the
end-user analyze the pulse morphology more thoroughly. The
primary plot is the morphologram [Fig. 4(A)], which shows the
pulse morphology as it varies over mean pressure. This is similar
in appearance to time-frequency analysis, except with the signal
metric on the horizontal axis and delay past pulse onset on the
vertical axis. Fig. 4(B) shows the color scale used to encode the
pulse morphology in the morphologram. In this example, at low
mean ICP the first dark band represents the percussion peak and
the second represents the tidal peak; the dichrotic peak also ap-
pears, though very faintly. The morphologram reveals that the
tidal peak increases in amplitude and merges with the percus-
sion peak starting at about . = 12 mmHg, forming a large and
very dark band at high mean ICP (the “rounded” morphology).
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Fig. 4. ICP morphologram with (A) signal metric rn» = mean ICP. Supplementary plots include (B) pseudo-color scale, (C) pseudo-colored residual histogram,
(D) signal metric histogram, (E) pseudo-colored morphology histogram, (F) pulse morphology overlap plots, and (G) original signal and mean .

Fig. 4C, shows a 2-D histogram of the estimation residuals
at each delay, zp (b + 7) — p(7, my). Its vertical axis corre-
sponds to the vertical axis (7) of the morphologram. The color
scale uses a continuous range from light pink (smallest non-zero
density) to dark red (largest density). This histogram is useful
for identifying the delays at which the observed morphology
xp(bx + 7) differs the most from the expected morphology
ﬁ (T7 mk)‘

Fig. 4(D) shows a histogram of the observed signal metrics
m. This is helpful for identifying regions of sparse data. In these
regions the estimated morphology p(7, m) will be less accurate.

Fig. 4(E) shows a 2-D histogram of the observed morpholo-
gies xp(by + 7). This uses the same color scale as Fig. 4(C)
and has the same vertical axis () as the morphologram. This is
useful for identifying the dominant observed morphology and
the variability of the morphology.

Fig. 4(F) shows five overlap plots of the observed pulse mor-
phologies (light gray) over the same five segments of m and
the estimated morphology at the center of the range (dark blue).
This is useful for investigating examining the morphology with
better resolution in several distinct regions of the morpholo-
gram.

Fig. 4(G) shows the original signal and trend in the time do-
main

B. Examples

We applied the morphologram to two ICP signals obtained
from pediatric patients with TBI admitted to the Intensive Care
Unit at the Doernbecher Children’s Hospital. The data acqui-
sition protocol was reviewed and approved by the Institutional
Review Board at Oregon Health and Science University, and the
requirement on informed consent was waived. The ICP signals

were interpolated using a polyphase filter implementation from
an original sample rate of f; = 125 Hz to 250 Hz to increase
the resolution of the morphologram. The additional examples
used four signal metrics (m): mean ICP [Fig. 5(c) and (d)], time
[Fig. 5(a) and (b)], ICP pulse pressure [Fig. 5(e)], and mean ar-
terial pressure (MAP) [Fig. 5(f)]. We obtained the MAP in the
same manner as that used to obtain the mean ICP (Section II-B).
The ICP pulse pressure is defined as the systolic ICP minus the
diastolic ICP [17], [32]. We calculated the pulse pressure on a
beat-by-beat basis, in which the pulse pressure of the kth beat is

Tpp(bk) = max [2(br + 7)] — z(b) (8)

as in [33]. This maximum was constrained for values of 7 > 0
and less than the average inter-beat interval.

1) ICP Pulse Morphology Versus Time: Fig. 5(a) and (b) uses
the morphologram to display how the ICP pulse morphology
varies over time. In Fig. 5(a), both the percussion and tidal peaks
appear as dark bands for the first 30 min. This suggests they had
a similar amplitude over that time, and the two left-most pulse
overlays confirm this. The dichrotic peak also appears faintly
during this time interval. Between about 35 and 50 min, a wide
dark band appears, indicating the emergence of a dominant tidal
peak. This happens during the period of acute hypertensive ICP,
as shown in the time domain signal. After the signal returns to
pre-hypertensive levels (at about 50 min), however, the pulse
morphology does not return to its pre-hypertensive state. This
may suggest a deterioration in brain compliance that would be
undetectable without the morphologram.

In contrast, the time morphologram applied to the second
signal [Fig. 5(b)] tells a different story. Here only one peak ap-
pears, though as shown during the period of mild hypertension,
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Fig. 5. Examples of the morphologram applied to two ICP signals with four different signal metrics . (a) Signal 1 m = Time, (b) Signal 2 e = Time, (c)
Signal 1 m = mean ICP, (d) Signal 2 m = mean ICP, (e) Signal 1 m = Pulse — Pressure, and (f) Signal 2 m = MAP.

the dominant feature switches from a narrow percussion peak to
a wide tidal peak of higher amplitude.

2) Variation With Mean ICP: Figs. 4 and 5(c) and (d), show
the morphologram with the mean ICP as the signal metric. In
Figs. 4 and 5(c), the morphologram clearly shows two distinct

peaks (percussion and tidal) at low mean ICP, and the dichrotic
peak is faintly visible. As mean ICP increases, the tidal peak
becomes dominant and the morphology appears to have a
single peak with high amplitude and long duration. This is the
“rounding” phenomenon, shown as the wide dark band.
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Fig. 5(d), in contrast, shows less distinct percussion and tidal
peaks with a subtler transition from a dominant percussion peak
at low mean ICP to a dominant tidal peak at high mean ICP.

3) ICP Pulse Morphology Versus Pulse Pressure: Fig. 5(e)
shows the ICP pulse morphology versus pulse pressure. The
relationship expressed in Fig. 5(e) is quite similar to that in
Fig. 5(c), with the tidal peak becoming dominant at about
5 mmHg. This is consistent with the expected correlation
between mean ICP and pulse pressure. More importantly, it
suggests the pulse pressure may provide no more information
about the ICP morphology than is available from the mean ICP.
This is significant because the pulse pressure is more difficult to
calculate and is not readily available through most commercial
ICP monitors.

4) ICP Pulse Morphology Versus Mean ABP: Fig. 5(f) shows
the relationship between the ICP pulse morphology and MAP.
The morphologram is similar to Fig. 5(d), suggesting that for
this signal, the relationship of pulse morphology with MAP is
similar to the relationship with mean ICP. Many studies have ex-
plored the relationship between MAP and mean ICP [15], [34],
[35] but we are not aware of any studies that have examined the
relationship of MAP to ICP pulse morphology.

IV. CONCLUSION

The morphologram is a signal analysis tool that displays an
estimate of the pulse morphology. The pulse morphology is
known to contain potentially useful clinical information but is
difficult to study in the time domain without the aid of a tool such
as the morphologram. The morphologram can estimate the rela-
tionship between the pulse morphology and time, or any signal
metric.

The morphologram is an off-line analysis tool that relies on
established signal processing techniques, nonparametric regres-
sion, and an automatic beat detection algorithm. Although the
morphologram is best suited to exploratory analysis to aid in the
development of signal metrics, it could also be easily be adapted
for real-time monitoring of pulse morphology in a clinical set-
ting.

The morphologram could also be applied to other types of
signals that can be modeled as a point process consisting of a
series of events that generate a consistent morphology. For ex-
ample, this same methodology could be applied to extracellular
neuronal recordings, respiratory waveforms, and electrocardio-
grams.
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