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Abstract Ventricular extrasystoles (VE) are ectopic
heartbeats involving irregularities in the heart rhythm.
VEs arise in response to impulses generated in some
part of the heart different from the sinoatrial node.
These are caused by the premature discharge of a
ventricular ectopic focus. VEs after myocardial
infarction are associated with increased mortality.
Screening of VEs is typically a manual and time con-
suming task that involves analysis of the heartbeat
morphology, QRS duration, and variations of the RR
intervals using long-term electrocardiograms. We de-
scribe a novel algorithm to perform automatic classi-
fication of VEs and report the results of our validation
study. The proposed algorithm makes use of bounded
clustering algorithms, morphology matching, and RR
interval length to perform automatic VE classification
without prior knowledge of the number of classes and
heartbeat features. Additionally, the proposed algo-
rithm does not need a training set.

Keywords Clustering algorithms ! Dynamic time
warping !Holter recordings !Ventricular extrasystoles !
Ventricular premature complexes

1 Introduction

Long-term ECG monitoring is widely used to recog-
nize potentially lethal ventricular arrhythmias. How-
ever, manual analysis and inspection of long-term ECG
(Holter records) is often an involved and time con-
suming process. Consequently, automatic ECG pro-
cessing and analysis algorithms to detect, classify, and
cluster heartbeats are important. In this paper we de-
scribe an algorithm that can be used to cluster heart-
beats and detect ectopic complexs of ventricular origin.

Ectopic heartbeats are an arrhythmia involving
variations in an otherwise normal heartbeat. In many
cases, they occur without obvious cause and are benign
whereas, in other cases, they might be due to more
severe abnormalities including coronary artery disease,
high blood pressure, diabetes, ischemia, electrolyte
imbalance, stess or drug consumption [4].

In the present study we propose an unsupervised
method to automatically classify ventricular extrasys-
toles (VE) in Holter recordings. This method relies on
bounded clustering algorithms, morphology matching,
and RR interval length. Our method does not require
any prior knowledge of the number of classes or the
parameters of the heartbeats. A training set is not
necessary either.

1.1 Clinical significance

Ventricular extrasystoles or ventricular premature
complexes (VPC) are the most common form of ven-
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tricular arrhythmias [4]. They originate in the ventri-
cles and can be of potential high risk, depending pri-
marily on their frequency and prematurity. VEs may
lead to the appearance of ventricular tachycardia and
fibrillation [7]. They are more common in men than in
women, and prevalence increases with age. The
assessment and treatment of VEs is usually challenging
and it involves time consuming tests to evaluate blood,
thyroid, or electrolyte levels, an echocardiogram,
treadmill testing, cardiac catheterization, electrophys-
iology testing, or an electrocardiogram [9].

Ventricular extrasystoles can be treated by correct-
ing the underlying abnormality regarding electrolyte
imbalances, avoiding stimulants or medications that
may cause them, treating the possible heart disorders,
using proper medication or specific devices, and, in
some cases, applying surgery [9]. Automatic analysis of
Holter recordings has the potential to reduce consid-
erably the time required to diagnose and treat VEs.

1.2 Electrocardiogram evaluation

VPCs are infrequent and rarely detected using a short
duration single 12-lead ECGs. Long-term monitoring,
namely, Holter recordings [10], are better suited to
detect VPCs. In an electrocardiogram, VE can be
identified according to the following features [4, 7]:

• QRS duration exceeds that of dominant QRS
complexes because abnormal ventricular activation
takes place via intramyocardial functional path-
ways.

• Different morphology (Fig. 1). Bizarre QRS com-
plexes are present. No preceding premature P
waves occur. Rarely, a sinus wave is conducted. T

wave usually is in the opposite direction from the R
wave. If beats originate from a single focus, all the
VPC have the same morphology, although different
from the normal morphology.

• Usually, ventricular extrasystoles are premature,
RR intervals are shorter than average RR.

Automatic algorithms to process and analyze long
ECG registers are significant, since manual screening
of 24 and 48-h Holter recordings is time consuming and
difficult. In this paper we describe a novel unsupervised
algorithm to solve this problem. The proposed algo-
rithm makes use of a combination of partitional and
hierarchical clustering algorithms with a morphology
matching technique based on dynamic time warping
(DTW) [2]. Additionally, the algorithm does not re-
quire previous annotations or training.

1.3 Overview of hearbeat classification algorithms

In [1], the authors described a method to automatically
classify heartbeats using morphology, QRS duration,
and RR intervals. This algorithm requires fiducial point
detection and a training set for the linear discriminants
classifier models.

Dokur and Olmez [5] employed a hybrid neural
network for ECG beat classification. They also use a
training set and Fourier and Wavelet coefficients
determined by dynamic programing as the feature
extraction methods.

Engin [6] utilized a fuzzy-hybrid neural network for
heartbeat classification using three different feature
sets: autoregressive model coefficients, third order
cumulant, and the variance of the discrete Wavelet
transform using a Daubechies wavelet function. They
used a learning set of 800 beats and a testing set of
400 beats with a fixed number of classes of 4, and the
number of clusters is 18.

The method presented in [8] classifies heartbeats
using a preclassified category prototypes using a ge-
netic algorithm to optimally compute the parameters
of the method.

Lagerholm et al. [13] developed a method to cluster
ECG complexes into 25 groups using a functional
approximation and self-organizing maps.

Finally, Shyu et al. [16], described a method for
VPC detection using the Wavelet transform and a
fuzzy neural network.

All these algorithms require the user to provide
training set. Our proposed algorithm addresses the
problem of heartbeat classification and does not re-
quire a training set or user-specified parameters. The
main characteristics of the algorithm include:
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Fig. 1 Example of a real ECG signal illustrating different
heartbeat morphologies caused by VE
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• Unsupervised: It does not require the user to
annotate heartbeats in advance, a training set,
provide the number of unknown clusters, and the
number of unknown morphologies. No a priori
knowledge of the number of groups or the number
of heartbeats in each class is required either.

• Simple and intuitive feature extraction and feature
selection methods: hearbeat morphology and non-
uniform sampling.

• Based on VPC basic features: shorter RR intervals,
different morphology. A new feature is introduced:
Polarity (P). QRS duration is not included to avoid
the need to detect these fiducial points.

• Worst case application: single lead and global
classifier.

• Temporal cost plays a key role.
• The method is tested using most of the registers

from the MIT arrhythmia database [14].

2 Methodology

The general stages of the method are depicted in
Fig. 2, and the complete algorithm is in Algorithm 1.
Signals are acquired with Holter recorders. Registers
are then preprocessed in order to reduce the possible
signal interferences. Next a QRS detector is applied
and registers are segmented using the R wave location
found. For each heartbeat obtained, features are ex-
tracted and selected. Finally, a combined clustering
method is conducted to find the groups in the heartbeat
set. Following, these stages are described in detail.

2.1 Preprocessing

Input records, termed y[n], may contain noise, baseline
wandering, power line interference and artifacts, and
therefore the performance of the method might be
affected. In order to diminish the influence of such
elements, signals are filtered using a low-pass filter with
cut-off frequency of 35 Hz to reduce the noise and
power line interference, and then high-pass filtered
with a cut-off frequency of 1 Hz to reduce baseline
wandering. Although the signal is also partially filtered,
this preprocessing does not affect the separability of
the two groups, VPC and normal beats. The output of
this stage is an enhanced signal yp[n].

2.2 Segmentation

Segmentation is carried out based on R wave locations.
These locations may be obtained using a QRS detector
algorithm of good performance, as many reported in
the technical literature [12]. For example, we consider
[11] a good choice for its accuracy and implement-
ability. From these R wave locations, heartbeats in
yp[n] are segmented, starting at 25% of the previous
RR interval length before the R location, and ending at
75% of the current RR interval length after it. These
heartbeats hi make up a set:

H ¼ h1; h2; . . . ; hNf g;

where N is the total number of beats, andH[i] = hi. For
each heartbeat:

hi½n$ ¼ xi1; xi2; . . . ; xiLif g

where hi[j] = xij are the heartbeat samples, and Li is
the heartbeat length.

2.3 Normalization

Once the register heartbeats have been segmented, a
simple normalization process takes place before fea-

-

Fig. 2 Block diagram of the method proposed. First discrete
time signal y[n] (single lead) is acquired using a Holter recorder.

This signal is then filtered and segmented, and the resulting
hearbeats are grouped by means of a clustering stage
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tures are extracted. This normalization process is an
offset subtraction to set the mean value of each
heartbeat to 0.

2.4 Feature extraction

Every heartbeat hi½n$ ¼ xi1; xi2; . . . ; xiLif g carries mor-
phology information in its samples. However, as stated
in Sect. 1.2, VPCs can be detected not only by mor-
phology changes, but also by prematurity (shorter RR
intervals), changes in T wave direction, and changes in
QRS duration. A method to detect VPCs should take
into account all these features, but in order not to have
to detect the fiducial points to measure QRS duration,
we specifically used:

• Morphology given by the amplitude samples.
• Changes in T wave direction. It is measured indi-

rectly by a value termed polarity P, and defined as:

Pi ¼
maxðhiÞ
minðhiÞ

!!!!

!!!!

It measures the ratio between the maximum value
max(hi) and the minimum min(hi) of a heartbeat,
which is influenced by the directions of R and T waves.
• RR interval duration defined as Ri.

Thus, in order to distinguish between two beats, the
morphology, polarity, and RR interval, is employed.
The heartbeat representation includes these new two
features as hi ¼ xi1; xi2; . . . ; xiLi ;Pi;Rif g: Figure 3
shows the two classes of beats found in MIT register
210 using only polarity and RR interval duration where
the good separability provided by these two features
can be observed.

2.5 Feature selection

Heartbeat lengths Li are usually too long for a com-
plete morphology analysis of an entire Holter register.
We reduce the number of amplitude samples using a
non-uniform sampling method based on trace seg-
mentation [3].

Length of the morphology feature sequences is set
to 120 (time duration normalization), namely,
Li = 120," i. The basic morphology of the heartbeat
has to be kept while the computation time is reduced.
Trace segmentation (TS) samples the original heart-
beat at those points of main changes [3], and therefore
morphology of waves P, Q, R, S, and T is properly kept
for a wide range of lengths whereas baseline points are
omitted. At this stage, the obtained output heartbeat
set is termed bH ; with:

bH ¼ bh1; bh2; . . . ; bhN

n o
;

where bhi ¼ TraceSegmentationðhi; 120Þ: Algorithm to
compute the TS of a heartbeat is described in Algo-
rithm 2.

2.6 Morphology matching

Morphology matching is based on DTW, and it is the
dissimilarity measure used in the clustering algo-
rithms. DTW is a pattern matching technique that
stretches the time axis of the two heartbeats under
analysis in a non linear way and provides a quanti-
tative dissimilarity measure obtained from the matrix
of cummulative distances, the dynamic programming
matrix GDTW. Throughout this matrix, an optimal
alignment path between the two heartbeats is found
and the last node of the matrix (usually normalized
by the length of this path, LDTW), provides the dis-
similarity measure dDTW. A detailed description of
this morphology matching method can be found in [2,
3]. General steps are in Algorithm 3.

There are three ways to reduce the computational
cost of DTW:

• Reduce the size of the dynamic programming
matrix, that is, reduce Li and Lj. In this case, it is
accomplished by setting the length of all the
heartbeats to LH = 120 by means of trace segmen-
tation, LH = Li = 120, " i, as described before.

• Reduce the number of cells in the dynamic
programming matrix to be examined. This limits
the search area to a smaller region. A graphical

Fig. 3 Heartbeat class plot of MIT register 210. Separability of
class 1 (normal beats, squares) and class 5 (VPC, circles) using
only RR interval and polarity is clear
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example of GDTW, whose search region has been
limited, is shown in Fig. 4. Areas far from the
diagonal are initialized with a great value in order
to prevent the method from searching for the
alignment at unlikely nodes. The alignment path is
therefore bounded to be in the valley, that is, in the
area close to the matrix diagonal. This path
traverses the nodes of minimum slope. In this case
the width of the valley is set to 2*LH/3.

• Reduce the number of times DTW is computed.
The two other features, RR interval and polar-
ity, may suffice if the two heartbeats are very
different.

2.7 Partitional clustering

The clustering problem is the problem of finding
homogeneous groups of objects in a given set,
according to certain criteria. In this case, given N
heartbeats in bH ; the objective is to find a partition C of
NC clusters, C ¼ C1;C2; . . . ;CNCf g in such a way that
heartbeats in a cluster are similar with regard to RR
interval, polarity, and morphology.
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Fig. 4 Graphical representation of a dynamic programming
matrix G when two heartbeats are aligned. Regions far from
the diagonal have such a high cost (in theory, infinite, 200 in the
example) that the alignment path is constrained to the central
region, which is in addition the most likely region for usual
alignments
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For this first stage of partition initialization, the k-
means is used, with a relatively high number of clusters,
and the final clustering is obtained using a hierarchical
agglomerative approach. Every cluster is termed Ct

i,
where the superindex t accounts for a general time index
(clustering proceeds iteratively). Every cluster is a tuple
that comprises the following fields:

• A list of heartbeats that at time or iteration t are
included in the cluster, bhi1; bhi2; . . . ; bhij; . . . ; bhiNi

n o
:

• The average RR interval of the heartbeat list, Ri, as
well as Rimax and Rimin :

• The average polarity of the heartbeat list, Pi, as well
as Pimax and Pimin :

• A representative centroid zi, obtained from the
most centered heartbeat in the list, namely, the
heartbeat whose normalized RR interval and
polarity are the nearest to the average ones.
The objective of a partition initialization is to obtain

a tradeoff between a raw classification where all the
heartbeat types are represented, which assures global
maximum convergence, and a reasonably low number
of clusters.

In order to reach this objective, we based our initial
partition on the qualitative information we already
know about VPC: they are premature heartbeats, their
RR interval is usually shorter, polarity between T and
R waves often changes, and normal beats are majority
in the heartbeat set. Therefore, if two heartbeats be-
long to the same class, their RR interval and polarity
should be similar. Based on this idea, we apply loose
bounds to decide whether two heartbeats may belong
to the same class or not. Given two general heartbeats
bhi and bhj; these bounds are:

• The RR length ratio should be within an interval
bR1 ' Ri

Rj
' bR2 where the lower and higher bounds

are set as bR1 ¼ 0:75 and bR2 ¼ 1:25: This interval is
termed IR.

• The polarity ratio should be within an interval
bP1 ' Pi

Pj
' bP2 ; where the lower and higher bounds

are set as bP1 ¼ 0:5 and bP2 ¼ 1:5: This interval is
termed IP.

• Since it is difficult to fix distance bounds because
the value obtained varies greatly, we applied a
bound to the alignment path length LDTW and used
this measure as the dissimilarity instead of dDTW

(Algorithm 4). The value employed for this bound
is 1.5LH = 180.

• To prevent the clustering from using too many
clusters if the recording is noisy, the maximum
number of initial clusters for the k-means algorithm
NCmax is set to 50. This number is typically reduced
as the hierarchical clustering proceeds.

These bounds help to limit the search space to the
most likely region, and therefore reduce the compu-
tational cost. They are very loose and conservative, and
hence the exact value is not crucial.

Beats are classified to the minimum distance cluster
(alignment path length), provided RR interval, polarity
and alignment path length satisfy the constraints
mentioned above, otherwise a new cluster is created
and initialized with that heartbeat. In order to find the
best centroids for each cluster, the algorithm iterates
four times over the heartbeat set and at the end of each
iteration, centroids are recomputed taking the most
centered heartbeat of every cluster.

The output of this stage is a new set of clusters
C1 ¼ C1;C2; . . . ;CNCf g; 2 £ NC £ 50, where all the
heartbeats in a cluster satisfy the bounds for RR
interval, polarity, and LDTW. Pseudocode of this stage
is shown in Algorithm 5.

2.8 Hierarchical clustering

Once an stable initial partition has been found, an
agglomerative hierarchical clustering [15] is conducted
to join similar clusters. At each iteration, the dissimi-
larity among centroids of the clusters is computed. For
the two nearest centroids, ifLDTW is below the bound, as
well as the RR ratio and polarity, these two clusters are
merged, and the parameters of the resulting cluster
recomputed (Algorithm 6). With an updated partition,
this process is repeated until no more clusters can be
merged. The output of this stage is the final partition Cf

with NC clusters.
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When the final partition Cf has been found, heart-
beats in each cluster are matched with original heart-
beats in H. Then heartbeats in the input signal y[n] are
labelled according to the clustering results, and the
method finishes.

3 Results

3.1 Validation database

Annotated registers from the MIT arrhythmia data-
base [14] were used for validation since QRS locations
and the types of heartbeat are identified. Additionally,
these datasets have been used by other researchers to
asses the performance of similar algorithms. This
facilitates segmentation, performance assessment, and
comparison.

The specific registers utilized are shown in Table 1.
Name of the register, total number of beats, number of
normal and VPC, and the average RR interval length
and polarity, are included. Leads were processed
independently. Only heartbeats of class 1 (normal) or
class 5 (VPC) were kept in the set.

3.2 Experiments

We used the proposed algorithm to analyze the data-
base described above. The algorithm was implemented
as part of a software application and applied using a
personal computer with 1 GB of main memory, and a
Centrino Duo processor running at 1.66 GHz. Signals
were loaded into the software application, and they
underwent the stages described, from filtering to final
clustering. No interaction with the user was required.
Results obtained are shown in Table 2. Each column of
the table provides the following information:

• Clusters found: The number of clusters the method
found according to the restrictions described for the
bounds.

• Time: Time in seconds elapsed from the prepro-
cessing of the lead till the end of the clustering.
Only the first lead was processed.

• True positive (TP): The heartbeat was normal (MIT
label 1) and it was classified as normal beat.

• True negative (TN): The heartbeat was VPC (MIT
label 5) and it was clasified as VPC beat.

• False positive (FP): A VPC hearbeat grouped in a
cluster where normal heartbeats were dominant.

• False negative (FN): A normal heartbeat grouped in
a cluster where VPC heartbeats were dominant.

• SE: Sensitivity, defined as SE ¼ TN
TN+FP: Itmeasures

the ratio of correctly grouped normal heartbeats.
• SP: Specificity, defined as SP ¼ TP

TP+FN: It mea-
sures the ratio of correctly grouped VPC heart-
beats.

• PPA: Positive Predictive Accuracy, defined as
PPA ¼ TP

TP+FP: It measures the ratio of correctly
grouped positives.
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• CP: Clustering performance, defined as

CP ¼ TN+TP
TN+FP+TP+FN: It measures the ratio of

correctly grouped heartbeats.

In addition to assessing the ability of the algorithm
as a detector of VPCs, we also assessed its performance
for other applications. Table 3 shows the results when
using normal and atrial premature contraction (APC)
heartbeats, Table 4 using VPC and APC, Table 5 using
normal and right bundle branch block beats (RBBB),
and Table 6 using left bundle branch block heartbeats
(LBBB).

In order to better evaluate the performance under
general situations, we also used registers with more
than just two different heartbeat types. Registers used
were 102, 104, 107, and 217, with heartbeat types:
normal, VPC, paced, and fusion of paced and normal
beats. Results were:

1. Register 102. K = 4, t = 35 s. VPC were correctly
classified, the rest of types were considered the
same, namely, normal, paced and fusion beat were
classified together.

2. Register 104. K = 7, t = 43 s. VPC were correctly
classified, fusion beats were considered as normal
or paced.

3. Register 107. K = 6, t = 34 s. 57 VPC were incor-
rectly classified as paced, possibly because mor-
phologies were not very different. No other types
in this register.

4. Register 217. K = 15, t = 39s. Only 3 VPC were
incorrectly classified as paced. The rest of types
(normal, paced, and fusion) were classified to-
gether.

Finally, another experiment took place with heart-
beats where R location was omitted in 1 or 10% of the
heartbeats. As stated before, segmentation was inten-
tionally not ideal, to better account for real cases, but
no heartbeat was omitted until now. Results are shown
in Table 7.

4 Discussion

The results of our assessment study indicate that our
proposed algorithm has excellent performance. The

Table 1 Registers from the
MIT arrhythmia database
used in the experiments

!R and !P represent the average
RR interval and polarity,
respectively

Register Total beats N VPC !R !P

100 2,240 2,239 1 287.02 4.08
102 103 99 4 285.08 1.93
104 165 163 2 276.56 2.71
105 2,567 2,526 41 252.58 2.74
106 2,027 1,507 520 320.56 2.56
108 1,756 1,740 16 368.10 0.88
114 1,863 1,820 43 346.34 0.98
115 1,953 1,953 0 332.80 2.05
116 2,411 2,302 109 269.51 2.80
119 1,987 1,543 444 327.02 3.70
121 1,862 1,861 1 348.89 3.88
122 2,476 2,476 0 346.34 0.88
123 1,518 1,515 3 427.99 1.59
200 2,569 1,743 826 250.34 1.33
201 1,823 1,625 198 338.91 4.11
202 2,080 2,061 19 307.57 3.91
203 2,973 2,529 444 218.10 1.79
205 2,642 2,571 71 244.77 5.85
208 2,578 1,586 992 221.23 3.90
209 2,622 2,621 1 225.82 1.77
210 2,617 2,423 194 245.90 2.79
213 2,861 2,641 220 200.45 2.28
215 3,360 3,196 164 193.25 1.37
217 406 244 162 247.80 1.90
219 2,146 2,082 64 298.20 2.54
221 2,427 2,031 396 267.74 2.74
223 2,502 2,029 473 250.62 2.78
228 2,030 1,668 362 316.59 3.26
230 2,256 2,255 1 288.04 1.38
231 316 314 2 601.43 5.62
233 3,061 2,230 831 211.20 2.38
234 2,703 2,700 3 236.98 4.35
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algorithm was capable of performing accurate cluster-
ing without prior information about the number of
clusters and without a training set. These results indi-
cate that the algorithm may be used in a clinical
environment.

Most of the registers (17) were processed without
classification errors (Fig. 5). Others (7) only had errors
in one heartbeat type, and the rest presented a low
error percentage. Registers 115 and 122, with only
normal heartbeats, were included in the test to analyse

Table 2 Results of the experiments using only normal and VPC types

Reg. K T (s) TP TN FP FN SE SP PPA CP

100 5 40 2,239 1 0 0 100.0 100.0 100.0 100.0
102 3 1 99 4 0 0 100.0 100.0 100.0 100.0
104 3 2 163 2 0 0 100.0 100.0 100.0 100.0
105 21 53 2,525 41 0 1 100.0 99.9 100.0 99.9
106 7 37 1,507 520 0 0 100.0 100.0 100.0 100.0
108 20 42 1,740 13 3 0 81.2 100.0 99.8 99.8
114 11 34 1,820 43 0 0 100.0 100.0 100.0 100.0
115 4 38 1,953 0 0 0 100.0 100.0 100.0 100.0
116 20 46 2,302 107 2 0 98.1 100.0 99.9 99.9
119 4 26 1,543 444 0 0 100.0 100.0 100.0 100.0
121 11 35 1,861 1 0 0 100.0 100.0 100.0 100.0
122 3 35 2,476 0 0 0 100.0 100.0 100.0 100.0
123 3 24 1,512 3 0 3 100.0 99.8 100.0 99.8
200 10 51 1,743 821 5 0 99.3 100.0 99.7 99.8
201 9 28 1,625 198 0 0 100.0 100.0 100.0 100.0
202 7 36 2,061 19 0 0 100.0 100.0 100.0 100.0
203 30 85 2,479 417 27 50 93.9 98.0 98.9 97.4
205 14 51 2,571 71 0 0 100.0 100.0 100.0 100.0
208 15 49 1,585 991 1 1 99.8 99.9 99.9 99.9
209 2 51 2,621 1 0 0 100.0 100.0 100.0 100.0
210 23 61 2,421 188 6 2 96.9 99.9 99.7 99.6
213 6 46 2,641 188 32 0 85.4 100.0 98.8 98.8
215 7 69 3,195 158 6 1 96.3 99.9 99.8 99.7
217 9 7 244 159 3 0 98.1 100.0 98.7 99.2
219 9 43 2,082 64 0 0 100.0 100.0 100.0 100.0
221 6 40 2,031 396 0 0 100.0 100.0 100.0 100.0
223 14 49 2,020 468 5 9 98.9 99.5 99.7 99.4
228 20 42 1,668 362 0 0 100.0 100.0 100.0 100.0
230 4 38 2,255 1 0 0 100.0 100.0 100.0 100.0
231 3 4 314 2 0 0 100.0 100.0 100.0 100.0
233 7 60 2,229 827 4 1 99.5 99.9 99.8 99.8
234 5 43 2,700 3 0 0 100.0 100.0 100.0 100.0

The values of SE, SP, PPA, and CP are in percentage

Table 3 Results of the experiments using only normal and APC types

Reg. K T (s) TP TN FP FN SE SP PPA CP

103 6 33 2,082 0 2 0 0.0 100.0 100.0 99.9
112 2 40 2,537 0 2 0 0.0 100.0 100.0 99.9
117 3 21 1,533 1 0 1 100.0 99.9 100.0 99.9
220 4 34 1,953 87 7 1 92.5 99.9 99.6 99.6
222 24 76 1,964 120 88 98 57.6 95.2 95.7 91.8

The values of SE, SP, PPA, and CP are in percentage. TN and FP refer to APC

Table 4 Results of the experiments using only VPC and APC types

Reg. K T (s) TP TN FP FN SE SP PPA CP

118 4 45 2,163 25 71 3 26.0 99.8 96.8 96.7
207 5 2 86 107 0 0 100.0 100.0 100.0 100.0
232 10 29 432 1,382 0 1 100.0 99.7 100.0 99.9

The values of SE, SP, PPA, and CP are in percentage. TP and FN refer to VPC, and TN and FP refer to APC
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the performance when no VPC is found. Results for
register 209 were ideal, a register with two hearbeat
types, and with two corresponding clusters. Results for
register 203 were the worst due to the noise and the
lack of different QRS morphologies and RR lengths.

These results indicate that our algorithm has a per-
formance comparable to other published algorithms [1,
5, 13]. This is a remarkable result since other algo-
rithms typically require more user-specified parame-
ters, a training set and more leads.

The number of clusters changed depending on the
register structure (i.e. morphology, noise, outliers)
from 2 to 30 clusters. The number of cluster detected
were generally less than the fixed 25 or 18 clusters used
in other works [6, 13]. Processing time varied accord-
ingly with the number of clusters.

Results for other heartbeat types were not as good
as with normal and VPC. The accuracy is still high
when the morphology is different for the two types
under test (LBBB, RBBB, VPC). The worst results
were obtained for normal and APC, since their mor-
phology is the same and the only difference is the
prematurity of APC. These conditions are difficult to
detect even for cardiologists.

Finally, our results indicate that the algorithm per-
forms well even in situations where the R was not
correctly detected. In these cases the number of clus-
ters is usually greater in order to allocate the new
morphologies found (two heartbeats as one), but the
classification accuracy is still high.

5 Conclusion

We described a novel method to solve the problem of
ECG beat clustering using an unsupervised approach.
Our results demonstrate that our proposed algorithm
has good performance and may be used in clinical
practice.

The polarity measure defined has proven to be a fast
and effective method to compare the morphology of
two heartbeats, which usually is quite different in VPC
and in normal beats. This measure could be used as a
characterization feature in other ECG processing and
analysis applications.

Ventricular extrasystoles detection is an important
preprocessing step necessary in a variety of applica-
tions such as extrasystolic potentiation assesment, VE

Table 5 Results of the experiments using only normal and RBBB types

Reg. K T (s) TP TN FP FN SE SP PPA CP

212 4 42 919 1,822 3 4 99.9 99.5 99.6 99.7
231 4 21 314 1,253 1 0 99.9 100.0 99.6 99.9

The values of SE, SP, PPA, and CP are in percentage. TN and FP refer to RBBB

Table 6 Results of the experiments using only LBBB and VPC types

Reg. K T (s) TP TN FP FN SE SP PPA CP

109 6 41 2,491 34 4 1 89.4 99.9 99.8 99.8
111 4 38 2,123 0 1 0 0.0 100.0 99.9 99.9
207 17 32 1,447 104 1 10 99.0 100.0 99.3 99.2
214 11 40 2,003 256 0 0 100.0 100.0 100.0 100.0

The values of SE, SP, PPA, and CP are in percentage. TP and FN refer to LBBB

Table 7 Results of the experiments when QRS detection is incorrect (1% or 10% error detection)

Reg. K T (s) TP TN FP FN SE SP PPA CP

106 8 39 1,507 520 0 0 100.0 100.0 100.0 100.0
119 5 29 1,543 444 0 0 100.0 100.0 100.0 100.0
200 13 51 1,743 815 11 0 98.6 100.0 99.3 99.5
106 8 32 1,507 491 29 0 94.4 100.0 98.1 98.5
119 5 24 1,543 444 0 0 100.0 100.0 100.0 100.0
200 19 42 1,741 819 7 2 99.1 99.8 99.5 99.6

The values of SE, SP, PPA, and CP are in percentage
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per time unit measurement, classification according to
relationship to normal beats (bigeminy, trigeminy,
quadrigeminy, couplet and nonsustained VE), classifi-
cation according to origin (unifocal or multifocal), and
classification according to frequency (frequent or
occasional).
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