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Abstract T-wave alternans (TWA) are beat-to-beat

amplitude oscillations in the T-waves of electrocardiograms

(ECGs). Numerous clinical studies have demonstrated the

link between these oscillations and ventricular arrhythmias.

Several methods have been developed in recent years to

detect and quantify this important feature. Most methods

estimate the amplitude differences between pairs of con-

secutive T-waves. One such method is known as modified

moving average (MMA) analysis. The TWA magnitude is

obtained by means of the maximum absolute difference of

even and odd heartbeat series averages computed at T-waves

or ST–T complexes. This method performs well for different

levels of TWA, noise, and phase shifts, but it is sensitive to

the alignment of the T-waves. In this paper we propose a

preprocessing stage for the MMA method to ensure an

optimal alignment of such averages. The alignment is per-

formed by means of a continuous time warping technique.

Our assessment study demonstrates the improved perfor-

mance of the proposed algorithm.

Keywords T-wave alternans �Modified moving average �
Continuous dynamic time warping

1 Introduction

The introduction of digital electrocardiography and digital

computing has enabled the clinical use of advanced signal

processing techniques and the detection of subtle electro-

cardiogram (ECG) features of clinical significance. Some

of these features are not detectable by expert visual

inspection but have proven to be important markers for

serious heart illnesses [15]. An example of such a feature is

T-wave alternans (TWA).

TWA are beat-to-beat amplitude oscillations in the

T-waves of ECGs (Fig. 1). Numerous clinical studies have

demonstrated the link between these oscillations and ven-

tricular arrhythmias.

Several methods have been developed in recent years to

detect and quantify TWA, and use it as a non-invasive test

to identify patients who are at increased cardiac risk. Over

100 patents have been issued by the United States Patent

and Trademark Office (USPTO) on methods, processes,

and systems related to TWA. Assignees include major

medical device firms such as Medtronic, Inc. and GE

Medical Systems, Inc.

Time-domain analysis methods of TWA involve sub-

tracting T-waves of even versus odd beats as in the

commercially available modified-moving average (MMA)

method [10]. This paper describes an improvement for such

methods. MMA performs very well under different con-

ditions, but its accuracy can be improved if waves are

better aligned prior to distance calculation. To this end, we

added a preprocessing stage based on continuous dynamic

time warping (CDTW).
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In the following subsections we describe the relationship

between TWA and ventricular repolarization, its clinical

significance, and the state of the art of TWA analysis

methods. In Sect. 2 we present the alignment stage to

improve the accuracy and robustness of the standard MMA

method. Next, the assessment study is presented in Sect. 3.

The results of the assessment study are discussed in Sect. 4

and concluding remarks are provided in Sect. 5.

1.1 Ventricular repolarization

Repolarization is the electrophysiological phenomenon

associated with the recovery of cardiac cells after their

excitation. T-waves in an ECG are the electrical manifes-

tation of this repolarization process and may reflect

electrical disturbances in normal electrophysiology asso-

ciated with some cardiac diseases. Thus, T-waves provide

physicians with indicators of cardiac abnormalities and a

means to assess therapy.

T-waves correspond to the ECG manifestation of the

differences in action potential durations in the myocar-

dium. The beginning of the T-wave is linked to the first

cells that repolarize, and the end of the T-wave is defined

by the last cells in repolarizing. The contour of the com-

plete wave is directly related to the path of repolarization,

and alterations have a counterpart in the shape of the

T-wave. This phenomenon can occur on a beat to beat

basis, as in TWA.

Ventricular repolarization heterogeneity has been

demonstrated to constitute a risk indicator of possible

malignant arrhythmias and sudden cardiac death [10]. The

assessment of repolarization instability can be improved

by analyzing the repolarization shape changes represented

by TWA. In the ACC/AHA/HRS 2006 Guidelines for

Management of Patients with Ventricular Arrhythmias and

the Prevention of Sudden Cardiac Death, TWA was

defined as a class 2a indication. It was stated that is

reasonable to use TWA for improving the diagnosis and

risk stratification of patients with ventricular arrhythmias

or who are at risk for developing life-threatening ven-

tricular arrhythmias. Although numerous modalities exist

at present for assessing this risk, only two are approved by

the US Food and Drug Administration: signal-averaged

ECG and TWA.

1.2 Clinical significance

Many clinical studies have demonstrated the correlation

between TWA and the vulnerability to ventricular

arrhythmias by means of ECG record analysis in patients

who experienced sudden cardiac arrest and other cardiac

events [17]. For instance, TWA magnitude has been found

to be linked to malignant arrhythmias under diverse clinical

conditions: myocardial infarction and ischemia, heart fail-

ure, electrolyte disorders, cardiomyopathy, long QT

syndrome, and drug intoxications [5]. Additionally, higher

levels of TWA are correlated with a higher ventricular

fibrillation (VF) risk.

1.3 State of the art

Over 100 patents have been issued by the USPTO on

methods related to TWA developed by medical device

corporations.

In recent years, the research community has also

developed methods to detect and quantify TWA. Some of

the most widely employed methods in clinical practice are

[7]:

• Spectral methods. A time series is created by taking

samples from consecutive T-waves, and then the

Fourier spectrum is computed. Peaks at frequency

0.5 cycles/beat indicate the presence of TWA [13].

• Complex demodulation method. The same time series

as in the previous case is demodulated and low pass

filtered. Amplitude and phase of the alternans are

derived from this filtered signal [12].

• Correlation method. A single cross-correlation coeffi-

cient is computed for every ST–T complex against a

representative for a heartbeat series. If the correlation

index alternates for some consecutive beats, a TWA

episode is detected [1].

• Poincare mapping. Poincare maps are formed by

plotting T-wave magnitude of alternate beats [15].

Semiperiodic signals such as TWA, appear as tight

clusters. TWA magnitude is the intercluster distance.

• MMA. TWA magnitude is obtained by means of the

maximum absolute difference of even and odd
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Fig. 1 Example of an ECG with TWA. Heartbeats 3, 5, and 7 exhibit

T-waves 200 lV higher than those in heartbeats 1, 2, 4, 8, and 10.

Additionally, there is a TWA phase shift at heartbeat 2
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heartbeat series averages computed at T-waves or ST–T

complexes [11].

Although the diversity of approaches and the lack of a

reference database makes method comparison difficult,

there are some known issues that led us to choose MMA as

the basic TWA analysis method. Spectral methods are very

sensitive to changes in data stationarity and artifacts,

whereas repolarization heterogeneities can be transient

events [15], the complex demodulation method requires a

significant analytical complexity, and in the correlation and

Poincare mapping methods, it is not possible to determine

the temporal position of TWA.

2 Materials and methods

2.1 Standard MMA

The MMA is one of the most successful TWA analysis

methods and it is used by commercially available devices.

This method has proven to be very robust against noise

[14] and provides a high sensitivity and specificity for

predicting impending VF. Additionally, MMA analysis

achieves a good signal-to-noise ratio, it is relatively toler-

ant of nonstationary data such as changing heart rates or

motion artifacts, and it is independent of phase shifts [18].

MMA considers the ECG as a series of heartbeats (for

TWA measurement purposes, only T-waves or ST–T

complexes are processed). Odd and even heartbeats are

labeled as An and Bn, respectively, where n as the order

index. The ECG signal can then be defined as a combi-

nation sequence of consecutive An and Bn heartbeats:

ECG ¼ fA1;B1;A2;B2; . . .;AN
2
;BN

2
g:

where N is the total number of heartbeats in the ECG, An is

the 2n-1 heartbeat, and Bn is the 2n beat, for 1� n� N
2
:

The length of each heartbeat is k. In general, k is different

for each one, that is:

An ¼ Anð1Þ;Anð2Þ; . . .;AnðkAn
Þf g;

and

Bn ¼ Bnð1Þ;Bnð2Þ; . . .;BnðkBn
Þf g:

Using these definitions, computation of TWA is

described in the following steps:

1. Initialization. This is carried out by taking the first

heartbeat as the initial average:

A1 ¼ A1

2. Proceed with all the heartbeats in the series to update

the weighted average accordingly AnðiÞ ¼ An�1ðiÞ þ

Di; for 1\n� N
2
; and 1 B i B k. Updating factor Di

is calculated using the following rules:

Di ¼ �32 if gi� � 32

Di ¼ gi if � 1� gi [ � 32

Di ¼ �1 if 0 [ gi [ � 1

Di ¼ 0 if gi ¼ 0

Di ¼ 1 if 1� gi [ 0

Di ¼ gi if 32� gi [ 1

Di ¼ 32 if gi� 32

where gi ¼ 1
8
½AnðiÞ � An�1ðiÞ�: Threshold values (32

and 1) may vary depending on the heartbeat amplitude

scale, and a temporal normalization is necessary in

order to make kAn
¼ kAn�1

(uniform resampling to

make the two lengths equal).

3. Obtain final average as the last computed weighted

average, for n ¼ N
2

: A ¼ AN
2
:

4. Repeat steps 1 to 3 for B series.

5. Measure TWA as the maximum absolute value of the

difference between A and B; dTWA ¼ maxjB� Aj:

2.2 Wave alignment

The curve matching problem has been widely studied since

it can be found accross different domains. Many experi-

ments yield data where the same phenomena exhibits

variations at different positions or may have different

durations. Analogously, the measurements for the single

samples can have different time scales or axes, or the

sample vectors may have different lengths. This applies to

ECG heartbeats, and therefore, to TWA measurement.

Dynamic time warping (DTW) is one of the numerous

methods that have been proposed to correct time shifts.

DTW is described as a method that can eliminate shift-

related artifacts from measurements by correcting a sample

vector of length J towards a reference of length I. Identi-

fying the global optimum for the warping path is

transformed into an efficient iterative procedure divided

into a forward step and a backward step:

• Starting from point (1, 1), and according to a minimi-

zation equation, construct the mapping grid G(I, J), in

which element G(i, j) is the optimal accumulated

distance up to point (i, j) (forward step).

• Find the optimal warping path by backtracing from i(L),

j(L) = (I, J) down to point (1, 1) (backward step),

where L is the alignment path length.

• Synchronization. Usually L is larger than either I or J

due to warping corrections. The extent of elongation is

unpredictable until the warping process is finished and

may vary from sample to sample. An additional
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synchronization step yielding vectors of length I is

required [16].

In order to apply this technique to the alignment of a

pair of heartbeats, ST–T complexes, or T-waves An and Am,

we consider them as two curves in a 2D space:

An ¼ fPnðtÞ; t ¼ 1; . . .; kAn
g, and Am ¼ fPmðtÞ; t ¼ 1; . . .;

kAm
g: We assume there is a correspondence map between

these two curves, u ¼ ½uAn
ðtÞ;uAm

ðtÞ� such that a point

PnðuAn
ðtÞÞ2An corresponds to a point PmðuAm

ðtÞÞ2
Am; t2f1; . . .; Lg:

The dissimilarity Sd between these two curves is com-

puted as [9]:

SdðAn;AmÞ

¼
XT

t¼2

dððAnðuAn ðt�1ÞÞ;AmðuAm ðt�1ÞÞÞ; ðAnðuAn ðtÞÞ;AmðuAm ðtÞÞÞÞ

¼
XT

t¼2

AnðuAn ðtÞÞAmðuAm ðtÞÞ
�����������!� AnðuAn ðt�1ÞÞAmðuAm ðt�1ÞÞ

���������������!���
���

2

ð1Þ

where || � ||2 is the Euclidean norm.

The objective of this method is to find the alignment

path between An and Am that minimizes the dissimilarity.

Analytically, this objetive is defined as:

u ¼ uAn
;uAm

� �T¼ arg min
u

SdðAn;AmÞf g ð2Þ

The solution to this minimization problem can be

achieved by means of dynamic programming [2]:

SdðuðtÞÞ ¼ min
uðt�1Þ

Sdðuðt � 1ÞÞþf

dððAnðuAn ðt�1ÞÞ;AmðuAm ðt�1ÞÞÞ; ðAnðuAn ðtÞÞ;AmðuAm ðtÞÞÞÞ
o ð3Þ

where dððAnðuAn ðt�1ÞÞ;AmðuAm ðt�1ÞÞÞ; ðAnðuAn ðtÞÞ;AmðuAm ðtÞÞÞÞ
accounts for the distance between a pair of aligned samples

of An and Am.

Graphically, this procedure corresponds to finding the

optimal warping path on the mapping grid G(I, J). In

principle, the path can reach any node in the grid. How-

ever, constrained DTW is superior to unconstrained DTW

since the last is too flexible, resulting in an overfitting of

the observed shifts in some cases.

However, standard discrete DTW suffers from some

drawbacks, most importantly the fact that it is defined

between sequences of points rather than curves. The way in

which a curve is sampled to yield such sequence can dra-

matically affect the quality of the alignment [9]. In contrast,

a continuous version of DTW that is usually termed CDTW

does not suffer from this drawback, since a point in An is

allowed to match a point between two samples in Am

In CDTW the recursion equation is the same as Eq. 3,

with the additional condition that if uAn
ðtÞ takes values on

1; . . .;kAn
f g; then uAm

ðtÞ is allowed to take non-integer

values, and viceversa [9]. This is possible by means of a

linear interpolation model assumed for the curves, that is,

new intermediate matching points are computed by a curve

parameterization method:

x ¼ xði� 1Þ þ r
Dx

D

y ¼ yði� 1Þ þ r
Dy

D

where x(i-1) and y(i-1) represent the coordinates of a

point of the wave, and x and y represent a calculated new

point. r is the independent variable. Parameters are defined

as:

Dx ¼ xðiÞ � xði� 1Þ
Dy ¼ yðiÞ � yði� 1Þ

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx

2 þ Dy
2

q

For a unidimensional curve, Dx becomes 1, and Dy ¼
AnðiÞ � Anði� 1Þ . The same applies to Am.

DTW equations are updated accordingly to fit in

CDTW. A thorough description of DTW and CDTW

methods can be found in [2, 9]. The output of the method is

an optimal alignment between input waves An and Am.

Thus, the enhanced MMA (EMMA) method proposed in

this work adds a CDTW-based alignment to the standard

MMA method. The process stages are the same as in

MMA, but in the last one, the dissimilarity between the two

averages is computed using CDTW instead: dTWA ¼
maxjB� AjCDTW; that is, B and A are aligned as described

prior to finding the maximum difference between them. A

block diagram is shown in Fig. 2 and examples of the

alignment in MMA and EMMA methods are shown in

Figs. 3 and 4, respectively.

2.3 Assessment study data

Unfortunately, there is no gold standard public TWA

database annotated by experts [7] as in other similar fields

[3]. In order to provide an objective assessment of TWA

analysis methods, it is important to know parameters in

advance (waveform location, amplitude, beginning, end,

noise and artifacts, etc.) which currently can only be

achieved by designing a simulation study with synthetic

ECGs. Some researchers have created ECG registers by

replication of a real or synthetic single noiseless heartbeat

to which different kinds of noise and alternans episodes

were added [6, 4], but the resulting signals do not include

the physiological variability that may influence TWA

analysis. Others have included real recorded physiological

noise and time scaled basic heartbeat to better simulate a

real ECG [7]. In a few studies, researchers have used real
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noiseless annotated ECG signals, added real physiological

noise, and only TWA were synthetic. These signals

achieved very realistic registers although not all the

parameters were known. We also used this approach to

confirm that the results on real ECGs followed the same

pattern as with completely synthetic signals. Three regis-

ters from European ST–T database [3] were employed:

e0123, e0103, and e0105, preprocessed, and not-

preprocessed

A few clinical studies have used real ECGs with real

TWA. However, these datasets are not publicly available,

do not have a gold-standard for algorithm assessment, and

often are very specific to a certain cardiac disorder or

experimental set or were obtained invasively.

Our assessment study uses a few real ECGs with arti-

ficial TWA but mainly synthetic ECG registers with known

parameters. In order to achieve a high degree of realism,

we used the synthetic ECG generator recently developed

and described in McSharry et al. [8]. This method enabled

us to determine the positions and limits of the different

waves, change the heart rate, use variable levels of TWA

and noise, and add baseline wander. It is very important to

note that this work is not aimed at developing a new TWA

analysis method but to improve an already existing and

assessed method. Therefore, it is more convenient to use

controlled signals for an objective and sound comparative

analysis.

In the synthetic ECG generator, users can specify ECG

parameters of the ECG such the mean and standard devi-

ation of the heart rate, morphology of the PQRST cycle,

amplitude, sampling frequency, and the power spectrum of

the RR tachogram. The model generates a trajectory in a

3D state space with coordinates (x, y, z) where semiperi-

odicity of the ECG corresponds to the rotation of the

trajectory in an attracting limit cycle of unit radius in the

(x, y) plane. Each revolution on this circle corresponds to

one heartbeat. Interbeat variation in the ECG is simulated

using the motion of the trajectory in the z direction. Dif-

ferent points on the ECG, such as P, Q, R, S and T-waves,

are described by events corresponding to negative and

positive attractors/repellors in the z direction. These events

are placed at fixed angles along the unit circle given by hP,

hQ, hR, hS, hT. All these values were experimentally set by

real ECG analysis [8]. Synthetic TWA was created by

adding a Hamming function to the T-wave every two beats.

Fig. 2 Block diagram of the EMMA method proposed. Most of the stages coincide with standard MMA method except averages alignment

using CDTW

Fig. 3 No feature alignment, just linear length normalization.

Maximum distance calculation may be corrupted by local peaks

shifts, specially when noise is present

Fig. 4 Alignment using CDTW. Local peaks are aligned and

therefore artifact influence is reduced
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Figure 1 shows a portion of a synthetic TWA ECG created

in this way.

3 Assessment study and results

Experiments were conducted for several cases in order to

assess TWA measurement accuracy using MMA and

EMMA methods. The parameters used to generate the test

data were taken from similar works [14]:

• Levels of TWA: 10, 20, 50, 100, 200, 500, and

1,000 lV. Synthetic ECG of 2,000 beats sampled at

1,000 Hz. Vmax = 1.2 V. Vmin = -0.4 V.

• Sixteen heartbeats epochs. Choice of an appropriate

time window for TWA analysis is not straightforward.

Selection of a long window might hinder detection of

short transients, whereas selection of a short window

would increase the influence of spurious artifacts on the

results. Final TWA measurement corresponds to the

average of measurements obtained for each epoch in

the ECG register.

• Heart rate increasing from 30 to 200 bpm, in 10 bpm

increments where the length of cardiac complexes was

scaled according to the change in heart rate. Results

were averaged in order to reduce the amount of data.

• Phase reversals (5 phase shifts/min).

• Different levels r of random noise to assess the

accuracy and robustness of each method: 5, 10, 25,

50, 100, 200, and 300 lV.

• Simulated baseline wandering (changing amplitude and

frequency). Sinusoidal signal of 0.3 or 0.08 Hz.

Amplitudes from 1 to 25 lV.

Input signals underwent no preprocessing or treatment

aimed at improving signal quality; TWA was measured

directly. Results shown correspond to those obtained by

averaging partial results for all the heartbeat rates.

First, robustness against noise for several TWA levels

was analyzed. Results shown in Table 1 correspond to

TWA ranging from 0 to 20 lV for all the noise levels

mentioned above. Table 2 shows results for TWA level

from 50 to 1,000 lV.

In TWA analysis, there are other artifacts that may

influence measurement, such as baseline wandering. Some

experiments were conducted to assess the comparative

performance of MMA and EMMA methods under five

baseline wandering conditions. They were created using

two sinusoids of frequencies 0.3 and 0.08 Hz, and

amplitudes 1, 4, 10 and 25 mV. Four different noise levels

were also added. The results for this case are shown in

Table 3.

Phase shifts may also occur in registers with TWA.

Sometimes a phase reversal is triggered so that alternans

pattern changes, that is, heartbeat series become

...ABABBABABA... or ...ABABAABAB... An uncor-

rected phase reversal can mistakenly modify the TWA

estimate [11]. MMA method is intrinsically robust to these

phase shifts, and these experimental set was aimed at

assessing the vulnerability of EMMA to it in comparison to

MMA method. Table 4 shows some results obtained in this

case. Several noise levels were also added.

Another important source of errors in TWA measure-

ment is ECG fiducial point detection accuracy (QRS or T

detection, mainly). Incorrect detection of T-wave apex may

introduce a bias in the computation of the TWA. In order to

Table 1 TWA amplitude measurements using standard MMA and EMMA methods (EM), for real amplitudes ranging from 0 to 20 lV

Noise r TWA = 0 lV TWA = 2 lV TWA = 5 lV TWA = 10 lV TWA = 20 lV

MMA EM MMA EM MMA EM MMA EM MMA EM

0 lV 4.6 6.4 5.5 7.0 7.4 8.0 11.0 10.9 20.4 20.3

5 lV 15.2 12.1 15.4 12.2 16.5 12.3 19.1 13.5 27.1 20.2

10 lV 27.6 19.7 27.8 19.6 28.6 19.8 30.6 20.4 36.7 24.0

25 lV 66.4 44.7 66.4 44.8 66.8 44.7 68.1 44.8 72.3 45.7

50 lV 127.3 91.0 127.4 90.6 127.6 89.9 128.2 89.6 130.7 90.2

100 lV 255.4 197.2 255.5 197.1 255.7 197.6 256.1 197.3 257.4 198.1

200 lV 505.0 427.6 505.2 427.6 505.5 427.6 506.0 426.6 507.3 426.7

300 lV 805.7 696.4 805.9 696.5 808.6 697.5 809.1 698.3 811.9 696.1

e0123 0.231 0.163 2.10 2.14 4.79 5.00 9.27 9.53 18.28 18.56

0.238 0.167 2.07 2.06 4.57 4.69 8.81 9.01 17.62 17.85

e0103 0.262 0.124 1.84 1.88 4.51 5.38 8.80 9.89 17.42 18.54

0.299 0.157 1.89 1.93 4.48 5.38 8.71 9.80 17.13 18.29

e0105 0.471 0.371 2.02 2.32 4.84 6.34 9.47 10.95 18.66 20.15

0.608 0.489 2.01 1.62 4.48 6.13 8.56 10.43 16.51 18.35

Results for real signals are shown at the bottom, first row with preprocessing
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assess the performance of EMMA versus MMA method in

this case, additional experiments were conducted with

random shifts of T-waves peak position (±15 ms). Results

are shown in Table 5.

4 Discussion

Experiments assessed the performance of MMA and

EMMA methods under different conditions of noise level,

Table 2 TWA amplitude measurements using standard MMA and EMMA methods (EM), for real amplitudes ranging from 50 to 1,000 lV

Noise r TWA = 50 lV TWA = 100 lV TWA = 200 lV TWA = 500 lV TWA = 1,000 lV

MMA EM MMA EM MMA EM MMA EM MMA EM

0 lV 50.3 50.3 100.3 100.2 200.3 200.2 500.2 500.1 1000.0 1000.1

5 lV 56.2 50.0 105.4 99.8 204.4 199.4 502.8 498.5 1001.1 997.1

10 lV 63.1 49.6 111.6 99.3 209.9 198.8 506.7 497.4 1003.8 995.1

25 lV 91.5 57.5 133.8 99.1 229.7 197.7 522.5 495.0 1015.0 991.1

50 lV 145.1 89.9 180.8 114.6 268.1 198.4 555.4 493.6 1041.9 986.7

100 lV 265.9 197.7 291.1 203.8 357.9 238.4 621.4 485.4 1098.4 974.9

200 lV 512.6 426.3 528.7 426.9 579.4 441.5 794.8 562.1 1243.5 992.0

300 lV 815.9 711.0 827.0 695.3 859.5 717.1 1045.6 784.9 1365.8 999.5

e0123 45.19 45.48 90.22 90.52 180.21 180.52 451.33 451.63 910.79 911.10

43.85 44.08 87.25 87.50 174.77 175.04 445.71 445.99 908.24 908.51

e0103 43.67 44.82 87.09 88.27 173.70 174.94 434.17 435.41 872.95 874.21

42.80 43.97 85.18 86.37 169.83 171.04 423.74 424.96 848.50 849.71

e0105 46.00 47.46 91.44 92.92 182.4 183.85 455.55 457.00 911.16 912.60

40.95 42.76 81.83 83.66 163.46 165.28 408.14 409.97 814.33 816.15

Results for real signals are shown at the bottom, first row with preprocessing

Table 3 TWA amplitude measurements using standard MMA and EMMA (EM) methods, for different baseline wandering and noise scenarios

Baseline TWA = 0 TWA = 5 TWA = 10 TWA = 20 TWA = 50

MMA EM MMA EM MMA EM MMA EM MMA EM

(1, 0.3 Hz, 0) 8.9 10.8 10.1 10.8 13.0 12.7 21.1 21.0 50.4 50.4

(1, 0.3 Hz, 5) 17.7 14.6 18.6 14.8 20.7 15.7 28.1 21.5 56.4 50.1

(1, 0.3 Hz, 10) 29.5 20.7 30.1 20.6 31.7 21.2 37.7 24.6 63.2 49.9

(1, 0.3 Hz, 25) 65.6 44.2 66.1 44.6 67.1 44.6 71.1 45.6 91.2 57.4

(4, 0.3 Hz, 0) 24.8 25.5 25.5 25.5 27.1 26.8 32.5 32.3 56.4 56.4

(4, 0.3 Hz, 5) 31.9 28.1 32.4 28.2 34.0 29.1 39.1 33.3 62.2 56.0

(4, 0.3 Hz, 10) 41.6 31.9 42.1 32.0 43.3 32.4 47.5 35.1 68.8 55.6

(4, 0.3 Hz, 25) 74.9 51.7 75.2 52.1 76.1 52.1 79.0 53.1 96.3 63.5

(10, 0.3 Hz, 0) 54.2 53.0 54.5 53.1 55.6 54.1 59.0 58.0 76.8 76.3

(10, 0.3 Hz, 5) 60.7 55.3 61.1 55.4 62.0 56.1 65.5 59.4 82.9 76.9

(10, 0.3 Hz, 10) 69.0 58.8 69.2 58.9 69.8 59.2 72.9 61.3 88.8 76.7

(10, 0.3 Hz, 25) 100.3 77.4 100.5 77.0 101.1 77.1 103.4 77.9 116.6 86.2

(25, 0.3 Hz, 0) 105.7 103.9 105.9 103.9 106.4 104.7 108.9 107.6 121.8 120.8

(25, 0.3 Hz, 5) 110.7 105.2 111.0 105.4 111.6 105.8 114.0 108.4 126.7 121.1

(25, 0.3 Hz, 10) 118.8 109.7 119.0 109.8 119.5 110.1 121.8 111.7 134.3 123.4

(25, 0.3 Hz, 25) 145.6 125.0 145.7 125.2 146.0 125.3 147.2 125.6 158.3 132.1

(25, 0.08 Hz, 0) 17.6 17.9 18.5 18.2 20.8 20.3 28.0 27.6 54.7 54.2

(25, 0.08 Hz, 5) 26.5 21.8 27.1 22.0 28.9 23.0 35.2 28.3 72.3 66.0

(25, 0.08 Hz, 10) 37.2 27.6 39.2 28.5 42.2 30.8 49.8 36.4 74.6 59.9

(25, 0.08 Hz, 25) 71.8 52.3 72.1 52.4 73.4 53.3 78.1 56.4 118.6 89.7

Baseline column reads as (Sinusoidal amplitude, Sinusoidal frequency, Noise level). All values in lV unless otherwise stated
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heart rate, and TWA amplitude. Results were obtained in

an unfavourable scenario of no signal preprocessing to

reduce noise or any other artifacts such as baseline wan-

dering. The objective was to conduct a comparative

analysis between EMMA and MMA under the same

conditions.

4.1 Noise

MMA error is greater than EMMA error in most cases. For

TWA = 0 lV, that is, registers without TWA, both

methods yielded measures greater than 0, even for

r = 0 lV. This is because synthetic registers have a small,

but not negligible, wave amplitude variation. For

TWA \ 10 lV or noise levels greater or equal than TWA

levels, measures were not accurate. It does not mean MMA

and EMMA methods can not detect low TWA levels, since

registers were not preprocessed. Actually, in a real case, it

is very unlikely to have noise levels greater than TWA

levels, but experiments were aimed at assessing compara-

tive accuracy between EMMA and MMA methods, not at

obtaining absolute measures.

As the noise level increases, TWA measurement error

based on MMA increases too. Regarding EMMA, a higher

level of noise does not necessarily imply a higher error.

This is because EMMA algorithm is able to align noise

peaks and therefore reduce its influence. Thus, EMMA

method is able to provide accurate TWA measures up to

noise levels half the level of the TWA itself in these

experiments.

When applied to the three real signals with synthetic

TWA, EMMA also outperformed MMA. However, dif-

ferences were not so great since signals noise was low

(preprocessing had a little influence on the results) and

specially because there were other factors such as ST–T

changes or other heartbeat types that influenced the results

(that is why we preferred complete synthetic signals). A

proper database of real ECG signals with TWA annotated

by experts is still lacking.

4.2 Baseline wandering

The experiments under different baseline wandering con-

ditions also demonstrated that EMMA is more robust than

MMA in these circumstances (Table 3). The effect of

baseline wandering is an increase in the low detection

threshold for TWA amplitude because of the additional

wave amplitude offset. These methods are more sensitive

to baseline wandering than to noise, that is, for sinusoidal

amplitudes greater or equal than 10 lV, it is not possible

to get accurate TWA measures in these experiments for a

frequency of 0.3 Hz (an otherwise high baseline wander-

ing frequency). For a more usual frequency, 0.08 Hz,

baseline influence on TWA measurement reduces

drastically.

4.3 Phase shifts

When there are phase shifts in the register, EMMA is

again more accurate and robust. When no noise is present,

results are equal (slightly better for EMMA if

TWA = 10 lV, and better for MMA in the rest). With

some noise, EMMA outperforms MMA in all cases by

25%. Since EMMA is based on MMA, the effect on the

results of the phase shifts is negligible if noise is present,

namely, there are no differences between EMMA and

MMA as for phase shifts provided there is no noise in the

signals. Hovewer, this is an unrealistic case because even

after signal filtering, it is almost impossible to remove all

the noise in a real signal.

Table 4 TWA amplitude measurements using standard MMA and EMMA(EM) methods, for phase shifts

TWA = 10, r = 0 10, 5 TWA = 20, r = 0 20, 5 20, 10

MMA EM MMA EM MMA EM MMA EM MMA EM

Phase shift 10.4 9.9 18.8 13.2 19.8 19.6 27.3 22.5 37.1 27.1

All values in lV

Table 5 TWA amplitude measurements using standard MMA and EMMA (EM) methods, with T-wave position errors

Noise r (lV) TWA = 0 lV TWA = 5 lV TWA = 20 lV TWA = 100 lV TWA = 500 lV

MMA EM MMA EM MMA EM MMA EM MMA EM

0 80.5 69.3 84.3 72.6 80.1 68.6 119.9 112.7 504.3 499.9

5 86.3 71.3 84.9 70.0 86.0 70.6 124.5 112.1 508.5 499.2

50 168.7 124.4 173.2 127.2 167.2 123.8 196.7 136.0 562.3 494.9
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4.4 Wave detection errors

Wave detection errors also add measurement bias since

peaks are not correctly aligned. In all cases tested, EMMA

results were more accurate, although measurements started

to be acceptable for TWA greater than 100 lV. However,

it has to be noted that heart rate is important in this case

since 15 ms fiducial point shift is more significant for

120 bpm than for 60 bpm.

5 Conclusion

We presented a method to improve the accuracy of the

MMA TWA analysis, based on DTW curve alignment. The

results of our assessment study demonstrate EMMA to be

more accurate than MMA. Specifically, our proposed

method is more robust against noise, baseline wandering,

phase shifts, and wave detection errors.

EMMA is simple to implement and computationally

inexpensive. It only requires an additional stage before

distance calculation in a standard MMA method. Accuracy

can be further improved since curve alignment was only

applied at the last stage of the distance calculation between

averages A and B; namely, intermediate averaging was

computed without wave alignment, just wave length nor-

malization. Thus, some alignment errors are already

present before final curve matching takes place. However,

the application of this method at every MMA algorithm

step would be computationally very expensive, and there-

fore that possibility was discarded.

Experimental parameters were set for an unfavourable

scenario. No filtering or preprocessing was applied as in a

real case since the objective was to compare EMMA and

MMA methods in a relative way to determine which one is

more accurate and robust. There are other studies were

MMA performance and accuracy was assessed and dem-

onstrated (including minimum TWA amplitude detection

threshold) in an absolute way [11, 14].
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