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Abstract Body temperature is a classical diagnostic tool

for a number of diseases. However, it is usually employed
as a plain binary classification function (febrile or not

febrile), and therefore its diagnostic power has not been

fully developed. In this paper, we describe how body
temperature regularity can be used for diagnosis. Our

proposed methodology is based on obtaining accurate long-

term temperature recordings at high sampling frequencies
and analyzing the temperature signal using a regularity

metric (approximate entropy). In this study, we assessed

our methodology using temperature registers acquired from
patients with multiple organ failure admitted to an inten-

sive care unit. Our results indicate there is a correlation

between the patient’s condition and the regularity of the
body temperature. This finding enabled us to design a

classifier for two outcomes (survival or death) and test it on

a dataset including 36 subjects. The classifier achieved an
accuracy of 72%.

Keywords Body temperature ! Approximate entropy !
Temperature regularity ! ROC analysis ! Biomedical signal

processing

1 Introduction

Body temperature is an important diagnostic tool since its

changes accompany many diseases [4, 6, 16]. It can also be

used to monitor the course of the disease or the efficiency
of treatment. Body temperature is often measured discon-

tinuously at time intervals of up to hours and is used to

establish if the patient is febrile or not. Recently, other
diagnostic techniques based on continuous body tempera-

ture monitoring have been proposed [27, 28]. The rationale

behind these methods is that there may be a correlation
between body temperature and patient’s condition that a

measurement every several hours cannot show. The

methodology in this cases consists on registering body
temperature for a long time (days or even weeks) at higher

sampling rates (a few minutes instead of hours), and ana-

lyzing not only the absolute values of the temperature but
also its evolution, differences, changes, and patterns.

Based on this last approach, we propose a method to map

the regularity of a body temperature register into the clinical
outcome using a classifier. In this paper, we estimated the

regularity of the body temperature register using approxi-

mate entropy (ApEn) averaged along overlapping epochs of
the registers [18]. Previous studies have demonstrated there

are clinical implications of body temperature curve com-

plexity [27, 28] and ApEn has been successfully used to
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estimate the regularity of other biomedical signals [14, 20].

ApEn changes have often been seen to be predictive of

subsequent clinical changes. For instance, ApEn has been
applied to studies to discriminate atypical EEGs [3] and

respiratory patterns [7] from normative counterparts, it has

been used to quantify the differences in apparent regularity
between the heart rate interval time series of aborted SIDS

and healthy infants [21] and to characterize postoperative

ventricular dysfunction [9]. Preliminary evidence suggests
that ApEn of EEGs is predictive of epileptic seizures [22]. It

has also been applied to extract features from EEG and

respiratory recordings of a patient during Cheyne–Stokes
respiration [23] and to quantify the depth of anesthesia [32].

Within endocrinology, it has been used in multifaceted

ways; for instance, in the analysis of endocrine hormone
release pulsatility [19], and the impact of pulsatility on the

ensemble orderliness of neurohormone secretion [29].

ApEn has also been used to analyze intracranial pressure
(ICP) signals from patients with traumatic brain injury

(TBI) during episodes of abrupt intracranial hypertension
(ICH). Hornero et al. [12, 13] studied episodes of acute ICH

in pediatric patients with severe TBI and found that the

ApEn of ICP decreases during acute elevations. This sug-
gests that the complex regulatory mechanisms that govern

intracranial pressure are disrupted during acute rises in ICP.

Additionally, this study carried out a series of experiments
where ApEn was used to analyze synthetic signals of dif-

ferent characteristics with the objective of gaining a better

understanding of ApEn itself, specially with regards to its
interpretability in the context of biomedical signal analysis

and TBI. The results of this simulation study enable

researchers to interpret the ApEn metric in terms of clas-
sical signal processing concepts such as frequency, number

of harmonics, frequency variability of harmonics, and sig-

nal bandwidth. These results showed that (1) ApEn in-
creases as the frequency and the number of harmonics of a

sinusoidal signal increases, (2) ApEn is correlated with

noise bandwidth, increasing as the noise bandwidth in-

creases (ApEn is lower in the case of colored noise than for
white noise), (3) typical values of ApEn for sinusoidal

signals 0.001–0.007 (m = 1, r = 0.25 s), and (4) the ApEn

of biomedical pressure signals increases as the variability of
the cardiac component increases and decreases as the the

pulse morphology becomes more rounded.

2 Materials and methods

2.1 Subjects and study overview

Body temperature registers were recorded for 36 subjects

with multiple organ failure admitted to the intensive care
unit (ICU) of Mostoles Hospital, Madrid (Spain) using a

portable temperature data logger [30]. An example of such

register is shown in Fig. 1. The subjects were assigned to
one of two classes: survivors A and non-survivors B.

All patients defined as‘‘non-survivors‘‘ died in the ICU,

before discharge. All 36 studied patients were adults, with
age ranging from 37 to 83 years. Mean age was 63.0

(s = 11.7). There was no significant difference between
survivors and non-survivors regarding age (60.2 vs. 65.5).

Patients suffered from either medical (pneumonia, myo-

cardial infarction, etc) or surgical conditions (trauma,
abdominal surgery, etc). There were ten postoperative

multiorgan failure mostly due to oncologic interventions,

nine sepsis of respiratory origin, four of abdominal origin,
three from an urologic source, two secondary to politrau-

matism and ten multiorgan failures of diverse etiologies.

Temperature was measured all along the admission,
until the patient was discharged or considered dead and all

monitoring devices were retired. Nevertheless, to avoid the

influence of pre-mortem or peri-mortem conditions, the last

Fig. 1 Example of temperature
register. Measurements are
taken every 10 min. There are
low temperature measurements
at the beginning and end of the
register because of the sensor
hysteresis and disconnection
from the patient, respectively
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hour was not included in the analysis. The patients were

monitored for a median of 210 h, with a (statistically non-
significant) trend towards more hours of monitoring in

dying patients (median 323 vs. 195).

The temperature was measured with a thermistor sensor
attached on the right hypochondrium (right upper abdomen

quadrant). When this was not possible (because of surgical

wounds, etc), the left hypochondrium was used.
Patient’s body temperatures were recorded using a data

logger Spectrum 1000 [30] with a precision NTC 100 K

thermistor remote probe EPT-010. This device is able to
record temperature during 10 years with an accuracy of

0.05"C. Measures were taken every 10 min, and epoch

length L was 180 (30 h, a period long enough to assess
clinical evolution).

The base precision of the sensor used is 0.021"C at

25"C. The software introduces ‘‘smoothing’’ (averaging),
which reduces quantization noise in the data. In order to

display the maximum possible precision at a given tem-

perature, the temperature was displayed to 0.01"C. As for
the accuracy, it is difficult to answer, and even the idea of a

gold standard is debatable. Temperatures are known to

differ in different points of the body at the same time.
Nevertheless, we believe that what the real temperature is

is not so relevant. What we are studying is rather how the

temperature fluctuates, and the absolute values may not be
so important.

The presence of edema was not considered. Although any

part of the skin may be edematous, patients were almost all
the time laying on their back, and in this position the upper

abdomen is not specially prone to edema. We did not ana-

lyze the relation between temperature and blood pressure.
Indeed, blood pressure regulation frequently involves

peripheral vasoconstriction or vasodilatation and thus may

influence temperature readings (specially in peripheral
locations). Nevertheless, as stated before, we believe the

issue is not what the ‘‘real temperature’’ is and how our

measures correlate with it, but how the organism ther-
moregulates and what are the physiologic and clinical con-

sequences of it. Rather than proposing a new thermometry

technique, we try to explore the temperature variability.
Whatever the mechanism or the absolute temperature is,

severely ill patients seem to thermoregulate poorly (or, at the

very least, their peripheral temperature variability is blun-
ted), and this may be a marker of bad prognosis.

The resulting discrete time signals obtained from the

body temperature registers, y[n], were preprocessed to

remove invalid values (present, for example, when a sensor

disconnection takes place). Next, regularity was estimated
using ApEn for both classes, and a statistical test was

conducted to determine whether the ApEn means in the

different classes were statistically different [5, 31]. Finally,
a ROC analysis was performed to design a classifier. The

major methodological steps are shown in Fig. 2. These

stages are described in detail in the following subsections
and in the appendix.

2.2 Preprocessing

Prior to analysis we removed artifacts from the temperature
registers. The input registers y[n] may contain incorrect

temperature values due to:

• Sensor disconnection. Temperature registers often

contain artifacts or invalid measurements due to sensor
disconnection. This disconnection is sometimes inten-

tional (for example, when the patient is taken to

surgery, long duration) or accidental (patient move-
ment, short duration). Such measurements should be

removed or, if there are only a few, interpolated, if

possible. If the duration of the disconnection exceeds a
threshold, register finishes at the last valid measure-

ment, and a new register starts when correct measure-

ments are resumed (for instance, when the patient
returns from surgery).

• Border effects. There are also border effects since at the

beginning of the recording there is an adaptation period
for the sensor to provide a correct temperature

measurement because of hysteresis, and at the end,

when patient is supposed to be about to be discharged
or in a pre-mortem condition, measurements are not

significant.

To deal with these invalid signal measures, the

following procedure was established:

• A minimum threshold tv for valid temperature mea-
surements was set. Measures below that threshold were

considered to be due to sensor disconnection (ambient

temperature is measured instead). There is no upper
threshold since disconnection only implies lower tem-

perature measurements.

• Measurements at the beginning and at the end of the
recording, below the minimum valid temperature thresh-

old, were discarded. This is to eliminate border effects.

Fig. 2 Block diagram summarizing the steps followed in this study, from temperature recording to the classifier design
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• Missing samples, namely, measurements below the

minimum valid temperature threshold, within the

recording, were linearly interpolated provided there
are at most tm consecutive missing samples. Otherwise,

register finishes at the last valid measurement, and a new

one starts when new measurements above tv is found.

Since the regularity measurement was computed for
fixed duration intervals, the temperature recording was split

into valid overlapping epochs of length L, provided no

missing sample was found. Thus, analysis was performed
on uninterrupted signal epochs of fixed length.

The output of this stage is a set Yp of valid y[n] epochs.
For simplicity, we will refer to any of these epochs as x[n].

3 Results

In this study, 18 registers were available for each class.

Long term temperature registers were preprocessed prior to
the computation of the ApEn as described in Sect. 2.

Thresholds were tv = 30"C (minimum valid temperature),

tm = 2 (maximum number of missing samples to interpo-
late), and tl = 6 (number of overlapping samples between

consecutive epochs). The percentage of invalid samples

removed according to these thresholds was 0.46%.

Values for the ApEn parameters were m = 1 and

r = 0.2 times the standard deviation of y. As r is nor-
malized by the standard deviation, ApEn is amplitude

scale independent. These values have proven to perform

well in many cases [1, 14, 20]. Results for each register
and each class are shown in Table 1. The overall results

for class A were lA = 0.7646 and sA = 0.1595 and for

class B, lB = 0.5832 and sB = 0.1275.
The results of the statistical tests confirmed the existence

of statistically significant differences between the clas-
ses (a = 0.01). The parametric Student t test yielded

t = –3.5635 with P-value = 0.0011, rejecting H0, and con-

firming lA „ lB. This test was based on additional assum
ptions that were also confirmed. The normality test of

Shapiro–Wilks provided the following results:xA = 0.9601,

P-value=0.5961, xB = 0.9776, P-value=0.9035, and there-
fore normality was accepted. The homoscedasticity test

yielded F = 0.6392 with P-value=0.3657, namely, standard

deviations were considered to be equal. Finally, while
uncorrelation does not imply independence, the two

classes could potentially be assumed to be independent

based on the results of the correlation test (q = 0.0653,
P-value = 0.7967).

For the non-parametric test, MW statistic was U = 257,

with a P-value = 0.0028. Therefore it rejected H0 and
confirmed there were significative differences between the

medians of the two classes compared.

Figure 3 shows the corresponding ROC and accuracy
curves. From the accuracy curve, optimal threshold was

found to be 0.69, providing the best possible accuracy of

72% and AUC of 0.73. An area of 0.73 means that a ran-
domly selected individual from the class A has an ApEn

value larger than that of a randomly chosen individual from

the class B in 73% of the time [34].

4 Discussion

The results of our experiments with real body temperature

registers confirmed there is a statistically significant dif-
ference between the regularity of signals from patients that

survived and patients that did not. In order to use our

proposed methodology the sampling frequency must be
relatively high compared to the classical sampling fre-

quency in these cases, minutes instead of hours, and

acquisition has to last days or even weeks.
The importance of body temperature and its correlation

with certain physiopathologically relevant parameters in

healthy subjects has been shown in previous studies [27].
The relationship between loss of complexity of temperature

time series and clinical status of patients measured with the

sequential organ failure assesment (SOFA) score has also
been demonstrated [28]. Our findings are consistent with

Table 1 ApEn average values for each register

Register ApEn(A) Register ApEn(B)

01 0.8224 19 0.5996

02 0.7543 20 0.4849

03 0.6886 21 0.6629

04 0.7828 22 0.5641

05 0.5449 23 0.8788

06 0.7917 24 0.4850

07 0.9154 25 0.4197

08 0.5305 26 0.6568

09 0.8706 27 0.7176

10 0.9054 28 0.7312

11 1.0639 29 0.5733

12 0.7774 30 0.6329

13 1.0172 31 0.6466

14 0.6135 32 0.4634

15 0.6177 33 0.4520

16 0.6967 34 0.5661

17 0.5370 35 0.3560

18 0.6526 36 0.6049

lA 0.7546 lB 0.5832

sA 0.1595 sB 0.1275

Second column corresponds to patients that survived (A), and fourth
column to those who died (B)
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those of previous studies. A distinguishing characteristic of

our study with respect to previous works includes the de-

sign of a classifier to be used as a prognostic tool and
having conducted a complete statistical analysis to confirm

all the assumptions.

The physiological basis of these findings can only be
hypothesized. Nevertheless, they are by no means unex-

pected. Complex biological systems have frequently been

shown to display a loss of complexity when injured, and
temperature may well be just another example. Thermo-

regulation is a vital homeostatic function, with several

regulatory loops. In situation of severe illness (i.e. multiple
organ failure) there may be a loss of afferent or processing

functions, which would produce a ‘‘decomplexification’’

of its output. Furthermore, it has been proposed that one of
the earliest sign of dysfunction of complex systems is

an‘‘uncoupling‘‘’ of its regulatory loops, which would

determine a loss of ‘‘fine-regulation’’ and consequently a
loss of complexity in its output.

ApEn has also been used in other similar medical studies

with good results. It has been used to analyse information
provided by the electroencephalogram related to the Alz-

heimer’s disease [1], or study implications of heart rate

dynamics [25], among others. For temperature registers,
our results confirm the usefulness of this measure for dis-

tinguishing the two classes (t-test, P = 0.0011, and fMW

test, P = 0.0028).
Although ApEn also has limitations [24], they do not

affect the results in this case. The lack of relative consis-

tency is avoided by means of averaging several epochs of
each temperature register, and dependency on record

duration is eliminated by using the same epoch length for

all the registers.
ROC and accuracy curves provide information about the

sensitivity and false positive rate. Since ROC curves does

not depend on the scale of the test results offsets in the
measures do not change it. The practical lower bound for

the AUC is 0.5. Diagnostic tests with AUCs greater than

0.5 have some ability to discriminate between two classes
[17]. Since our AUC is 0.73 > 0.50, we can state

discrimination ability of the classifier is adequate to have

clinical utility. From the accuracy curve, optimal threshold

is 0.69, for a maximum accuracy of 72%, greater than the
random guess of 50%.

5 Conclusion

This work demonstrates body temperature registers provide
important clinical information when considered as contin-

uous signals using a regularity measurement based on

ApEn. It applies a subpattern similarity analysis of these
temperature registers to assess their regularity. Our results

indicate that the worse is the condition of a patient, the

more regular his body temperature register is.
We designed and assessed a classifier to map the tem-

perature regulatity into the two classes. The objective of this

work is to have a diagnostic tool that may help forecast
patient outcome, helping physicians in certain decision (i.e.

intensifying or curtailing therapeutic efforts or monitoring).

Furthermore, our proposed methodology is less invasive
and less labor-consuming than conventional scores, such as

SOFA, or APACHE (Acute Physiology and Chronic Health

Evaluation), while retaining a similar predictive power [28].

Appendix

Regularity estimation

Biomedical signal regularity measurement has proven to be
an effective way to obtain new information from these

signals that correlates well with clinical condition [28].

One of the most used mathematical tools to compute reg-
ularity in signals is ApEn [1]. This is a measure aimed at

obtaining the regularity of a data series because it reflects

the probability that patterns within the series are not fol-
lowed by similar ones. Therefore, a data series containing

many repetitive patters will have a low ApEn, whereas a

less predictable one will have a higher ApEn [11].
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The algorithm for computing ApEn is as follows. Given

an input data series x[n] of length N, an epoch of valid
temperature recordings, two input parameters must be

chosen in order to compute its ApEn, the length of the

pattern m, and the distance threshold r.
A data series pattern of length m is given by:

xmðiÞ ¼ x½i&; x½iþ 1&; . . . ; x½iþ m( 1&f g;

that is, m refers to the number of consecutive temperature
measures assumed to form a possible repetitive pattern

within x[n], and starting at sample x[i].
The distance between two generic patterns xm(i) and

xm(j) is given by:

d xm ið Þ; xmðjÞð Þ ¼ max x iþ k½ & ( x jþ k½ &j jð Þ; 1 ) k ) m:

ðA:1Þ

The distance threshold r determines if xm(i) and xm(j) can
be considered similar when d(xm(i), xm(j)) £ r. Given the

set of all possible patterns of length m, (xm(1), xm(2), ... ,
xm(N–m + 1)), we define:

Cr;mðiÞ ¼
ki;mðrÞ

N ( mþ 1
ðA:2Þ

where kr,m(i) is the number of patterns xm(j) that are similar
to xm(i) according to the distance threshold r. Hence, Cr,m(i)
is the fraction of patterns of length m starting at j, 1 £ j
£ N–m + 1 whose distance to pattern starting at i, is below
the threshold r, that is, they are considered to be similar to

pattern xm(i). This fraction is computed for each pattern, and

then another quantity can be defined as:

/mðrÞ ¼ 1

N ( mþ 1

XN(mþ1

i¼1

logCr;mðiÞ:

Finally, the computation of the ApEn of a temperature
epoch x[n], ApEn(m,r) is given by:

ApEnðm; rÞ ¼ /mðrÞ ( /mþ1ðrÞ
! "

ðA:3Þ

Namely, ApEn quantifies the relative prevalence of

repetitive patterns of length m compared with patterns

of length m + 1 [11]. ApEn is computed for all the
epochs in the temperature register, and then the mean -

ly = mean(ApEn(xi[n])), "xi[n] 2Yp, is obtained.

Hypothesis validation

ApEn was calculated for every temperature register in

classes A and B as described in previous section, and the

mean for both classes was obtained, lA ¼ meanðlyiÞ;
8yi 2 A; and lB ¼ meanðlyjÞ; 8yj 2 B: The objective of the
hypothesis validation was aimed at assessing if lA and lB
differences were statistically significant. There are several

statistic tests for this validation but in order to consider all
the possible scenarios, we chose two complementary tests

[10]. The first one, the classical parametric Student’s t test
[5], based on the assumptions of data normality and
homoscedasticity, difficult to make when not many input

instances are available, and the second one, the Mann–
Whitney test [31], a non-parametric method that does not

require the normality assumption.

For the Student’s t-test, the null hypothesis H0 is that the
two ApEn means for classes A and B are considered to be

equal, and then the objective is to decide whether to accept

or reject such hypothesis. In order to be able to carry out
this test, data normality, homoscedasticity, and indepen-

dence must apply. Normality can be assured using the

Shapiro–Wilks test [26, 33]. Homoscedasticity can be
confirmed by means of the Bartlett test [15], and inde-

pendency by a sample correlation study [10].

Taking a distribution as normal when not many obser-
vations are available may lead to incorrect conclusions.

The Mann–Whitney U test (MW) [2], a non parametric

test, can be carried out instead in order not to make such
assumptions, and be able to assess if there are significative

differences between the two populations with respect to

their medians. Again, null hypothesis H0 states the two
populations from which samples have been drawn have

equal medians, and the alternative hypothesis H1 states

medians are different.
To carry out the test, both groups are put together and

observations are rank-ordered from lowest to highest.

Then rankings are returned to the class, A or B, to which
they belong. The test statistic U is given by Yue and

Wang [31]:

U ¼ minfU1;U2g

with:

U1 ¼ nAnB þ
nAðnA þ 1Þ

2
(WA

U2 ¼ nAnB þ
nBðnB þ 1Þ

2
(WB

and where U1 is the total number of class A observations

preceding class B observations, and the other way round for
U2. WA and WB are the rank sums for each class.

Finally, additional tests were carried out to accept or

reject the assumptions of normality, homoscedasticity and
independence for the data [26, 33].
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ROC analysis

ROC analysis is a very useful tool to select a classifier and

visualize its performance and behaviour [8]. It has been used
in many medical diagnosis applications. If the previous

statistical tests determine that both classes have different

means, a classifier can be designed with this method. The
input to the classifier is the regularity measure obtained with

ApEn, and the output is a mapping to a predicted class.

Our classification problem consists of mapping an input
instance (mean ApEn of a temperature epoch) to one of the

classes in the discrete set {A,B }. If we call A the positive

class, and B the negative class, we can define the following
performance metrics for the classifier:

• True positive (TP): instance is A and it is classified
as A.

• False positive (FP): instance is B but it is incorrectly
classified as A.

• True negative (TN): instance is B and it is classified

as B.
• False negative (FN): instance is A and it is incorrectly

classified as B.
• Sensitivity: correctly classified instances of A divided

by the total number of A instances.

• Sensitivity: correctly classified instances of A divided

by the total number of A instances.
• Specificity: correctly classified instances of B divided

by the total number of B instances.

• Accuracy: ratio of correctly classified instances:
ðTPþTNÞ
ðPþNÞ ; where P and N are the total number of

positives and negatives, respectively.

A threshold is used to obtain a crisp classifier, that is,

instances can only belong to a single class. If the score is
greater than that threshold we map instance into class A,
otherwise into class B. The objective is to find an optimal

threshold that maximizes accuracy.
The ROC curve is plotted considering each possible

threshold as a different classifier, obtaining a set of points

in the ROC space that form the resulting curve, a step
function. Only one of the possible classifiers is finally

chosen, that considered optimal from the accuracy point of

view. Finally, the area under the ROC curve (AUC) is
computed in order to assess performance.
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