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An Enhanced Automatic Algorithm for Estimation
of Respiratory Variations in Arterial Pulse Pressure
During Regions of Abrupt Hemodynamic Changes
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Abstract—We describe an improved automatic algorithm to esti-
mate the pulse-pressure-variation (PPV) index from arterial blood
pressure (ABP) signals. This enhanced algorithm enables for PPV
estimation during periods of abrupt hemodynamic changes. Nu-
merous studies have shown PPV to be one of most specific and
sensitive predictors of fluid responsiveness in mechanically ven-
tilated patients. The algorithm uses a beat detection algorithm
to perform beat segmentation, kernel smoothers for envelope de-
tection, and a suboptimal Kalman filter for PPV estimation and
artifact removal. In this paper, we provide a detailed description
of the algorithm and assess its performance on over 40 h of ABP
signals obtained from 18 mechanically ventilated crossbred York-
shire swine. The subjects underwent grade V liver injury after
splenectomy, while receiving mechanical ventilation, and general
anesthesia with isoflurane. All subjects in the database underwent
a period of abrupt hemodynamic change after an induced grade
V liver injury involving severe blood loss resulting in hemorrhagic
shock, followed by fluid resuscitation with either 0.9% normal
saline or lactated ringers solutions. Trained experts manually cal-
culated PPV at five time instances during the period of abrupt
hemodynamic changes. We report validation results comparing the
proposed algorithm against a commercial system (pulse contour
cardiac output, PICCO) with continuous PPV monitoring capabil-
ities. Both systems were assessed during periods of abrupt hemo-
dynamic changes against the “gold-standard” PPV, calculated and
manually annotated by experts. Our results indicate that the pro-
posed algorithm performs considerably better than the PICCO
system during regions of abrupt hemodynamic changes.

Index Terms—Fluid responsiveness, hemodynamic monitoring,
pulse contour cardiac output (PICCO), pulse contour analy-
sis, pulse-pressure-variation (PPV) index (PPV), stroke-volume-
variation index (SSV).

I. INTRODUCTION

W E DESCRIBE a novel automatic algorithm that can be
used to obtain the pulse-pressure-variation (PPV) in-

dex from arterial blood pressure (ABP) signals. This enhanced
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algorithm is designed to be capable of estimating PPV during
regions of abrupt hemodynamic changes and artifact. Numerous
studies have demonstrated that PPV is one of the most sensi-
tive and specific predictors of fluid responsiveness. Specifically,
PPV has been shown to be useful as a dynamic indicator to guide
fluid therapy in different patient populations receiving mechani-
cal ventilation [1]. For instance, PPV was found to exhibit better
performance as a predictor of fluid responsiveness in patients
before off-pump coronary artery bypass grafting than standard
static preload indexes [2]. PPV has also been shown to be useful
for predicting and assessing the hemodynamic effects of vol-
ume expansion and a reliable predictor of fluid responsiveness
in mechanically ventilated patients with acute circulatory fail-
ure related to sepsis [3], [4]. Another study concluded that PPV
can be used to predict whether or not volume expansion will
increase cardiac output in postoperative patients who have un-
dergone coronary artery bypass grafting [5]. A critical review of
studies investigating predictive factors of fluid responsiveness
in intensive care unit patients concluded that PPV and other
dynamic parameters should be used preferentially to static pa-
rameters to predict fluid responsiveness [6].

The standard method for calculating PPV often requires
simultaneous recording of arterial and airway pressure. Pulse
pressure (PP) is calculated on a beat-to-beat basis as the differ-
ence between systolic and diastolic arterial pressure. Maximal
PP (PPmax ) and minimal PP (PPmin ) are calculated over a
single respiratory cycle, which is determined from the airway
pressure signal. PPVs ∆PP are calculated in terms of PPmax
and PPmin , and expressed as a percentage

PPV(%) = 100 × PPmax − PPmin

(PPmax + PPmin)/2
. (1)

We describe an enhanced algorithm to evaluate PPV from
ABP signals and assess its performance of real ABP record-
ings. A previous version of the algorithm has been previously
described [7]. This previous algorithm was made publicly avail-
able by the authors and due to its performance has been adopted
by Philips Medical Systems. Currently, our previously published
PPV algorithm is displayed in real time on the Philips Intelliveu
MP70 monitors (Intellivue MP70, Philips Medical Systems)
and has been used in numerous studies related to PPV and fluid
responsiveness. Its ability to monitor fluid responsiveness in
the operating room and its accuracy against the gold standard
obtained by manual annotations were assessed by Cannesson
et al. [8]. Respiratory variations in arterial PP (PPVman) are
accurate predictors of fluid responsiveness in mechanically
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ventilated patients. However, they cannot be continuously moni-
tored. Thus, in their study they assessed the clinical utility of our
previously published automatic estimation algorithm of PPV
(PPVauto). Their results showed that the agreement between
PPVman (gold-standard PPV through manual annotations) and
our PPVauto over the 200 pairs of collected data was 0.7% ±
3.4% (mean bias ± sd). A total of 17 patients were responders
to volume expansion. A threshold PPVman value of 12% al-
lowed discrimination of responders to volume expansion with
a sensitivity of 88% and a specificity of 100%, and a threshold
PPVauto value of 10% allowed discrimination of responders to
volume expansion with a sensitivity of 82% and a specificity
of 88%. Thus, they concluded that our previous automatic PPV
algorithm, PPVauto, is strongly correlated to PPman, is an ac-
curate predictor of fluid responsiveness, and allows continuous
monitoring of PPV. As stated by Cannesson et al. [8], PPV is
still considered the best predictor of fluid responsiveness in this
setting. However, it previously was not possible to conveniently
monitor this index in the operating room or in the intensive care
unit. Thus, the automatic PPV has potential clinical applica-
tion for fluid management optimization in the operating room.
Cannesson has made significant contributions related to fluid re-
sponsiveness based on dynamic indicators such as PPV [9]–[11]

A limitation of our previously described [7] algorithm
adopted by Philips in their Intelliveu MP70 monitors is that
it may not work adequately in regions of abrupt hemodynamic
changes. In this paper, we provide a detailed description of
an improved algorithm that contains additional filters in or-
der to make it robust to abrupt hemodynamic changes and as-
sess its performance on over 40 h of ABP recordings from
18 different subjects. We report validation results comparing
the proposed improved algorithm against a commercial system
with continuous PPV monitoring capabilities (PICCO Pulsion
Medical Systems, Munich, Germany). Both systems were as-
sessed during periods of abrupt hemodynamic changes against
the “gold-standard” PPV, calculated and manually annotated
by experts. The pulse contour cardiac output (PICCO) physi-
ological monitor has been used extensively in research studies
for hemodynamic monitoring [2], [12]–[30]. Despite the avail-
ability of a commercial device for PPV monitoring, the need
for additional independent PPV estimation algorithms is sig-
nificant for several reasons. For instance, the results of one of
these studies suggested that the PICCO PPV algorithm may not
work well in certain situations [29] and our validation results
indicate that the PICCO system may not work well during re-
gions of abrupt hemodynamic changes. Second, the improved
PPV algorithm presented in this paper can be implemented and
used to estimate PPV in data already collected and archived.
Finally, we provide a detailed description to ensure that other
researchers and medical manufacturers can implement it and
use it for research purposes, and to independently validate the
results obtained using commercial PPV monitoring systems. As
was the case with our previous version of the algorithm adopted
by Philips Medical Systems, we provide a thorough description
designed to ensure reproducibility so that both medical manu-
factures such as Philips and Pulsion or independent researcher
can implement it as part of their commercial systems.

II. METHODS: ALGORITHM DESCRIPTION

In this section, we provide a detailed description of the en-
hanced PPV estimation algorithm designed to improve its ro-
bustness during regions of abrupt hemodynamic change and
artifact. The methodology for steps 1–3 shortly is not identi-
cal but equivalent to [7, steps 1–5]. We provide an abbreviated
description of these steps for completeness.

A. Step 1: Beat Detection and Segmentation

An automatic beat detection algorithm for pressure signals
is applied to the input pressure signal x(n) to identify the time
instance corresponding to the beginning of each beat

a = f(x(n)) (2)

where f(x(n)) denotes the operation of applying the detection
algorithm to the input signal x(n). The result of this operation is
a vector a that contains the sample indexes corresponding to the
beginning of each beat (i.e., the minima preceding each beat)

a = (a1 , a2 , . . . , aN ) . (3)

Based on the vector a = (a1 , a2 , . . . , aN ), the data are seg-
mented as a set of N vectors corresponding to the N beats
present in the signal

x1 =
(
x(a1), x(a1 + 1), . . . , x(a2 − 1)

)
x2 =

(
x(a2), x(a2 + 1), . . . , x(a3 − 1)

)
...

xN =
(
x(aN ), x(aN + 1), . . . , x(L)

)
(4)

where x(L) denotes the last sample in x(n).
In this implementation, we used the detection algorithm de-

scribed in [31]. In practice, any automatic detection algorithm
with good performance can be used to perform this task. It
should also be noted that this is a different detection algorithm
than that used in [7].

B. Step 2: Beat Maxima Detection

Given the set of vectors {xk}N
k=1 corresponding to the seg-

mented signal x(n), the algorithm detects the time index bk

corresponding the maximum in each segment

b1 = arg max
a1 <n<a2 −1

x1

b2 = arg max
a1 <n<a3 −1

x2

...

bN = arg max
aN <n<L

xN . (5)

The result of this step is a vector b that contains the sample
indexes corresponding to the maxima of each beat

b = arg max
ai <n<ai + 1 −1

{x}N
k=1 = (b1 , b2 , . . . , bN ) . (6)
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C. Step 3: Envelope Estimation

In the next step, the algorithm estimates the upper ue(n)
and lower le(n) envelopes from the x(b) and x(a) time series,
respectively. This is accomplished by smoothing and uniformly
resampling x(a) and x(b) at a rate of fs with a kernel smoother

ue(n) =
∑N

k=1 x(b))b (|nTs − t(k)|/σb)∑N
k=1 b (|nTs − t(k)|/σb)

(7)

le(n) =
∑N

k=1 x(a))b (|nTs − t(k)|/σb)∑N
k=1 b (|nTs − t(k)|/σb)

(8)

where Ts = 1/fs is the resampling interval with fs correspond-
ing to the original sampling frequency of x(n), t(k) denotes the
times of the signal observations, σb is the kernel width, and b(·)
is a clipped Gaussian kernel function

b(u) =




exp
(
−u2

2

)
, if − 5 ≤ u ≤ 5

0, otherwise.

(9)

The kernel width controls the degree of smoothing and depends
on the fundamental frequency of the pressure signal (heart rate).
A width of 0.2 s works well for heart rates up to 4 Hz.

D. Step 4: PPV Estimation

The algorithm uses the estimated upper ue(n) and lower le(n)
envelopes to obtain a continuous estimate of the PP

r(n) = ue(n) − le(n). (10)

The estimate of PP r(n) also serves as an estimate of the respi-
ratory signal during mechanical ventilation.

A PP data matrix R = (r1 , r2 , . . . , rM ) is created by parti-
tioning the PP signal r(n) into M 50% overlapping vectors of
dimension D = 2(1/fr )fs × 1

M = 2Tr
2L

fs
(11)

where Tr = 1/fr is the average respiratory period and fr the
respiratory frequency, L denotes the number of samples in x(n),
ue(n), le(n) and r(n), and fs is the sampling frequency.

Given the set of vectors {rk}M
k=1 , the algorithm detects the

time index ck corresponding the minimum in each segment

c1 = arg min
1<n<D

r1

c2 = arg min
1<n<D

r2

...

cM = arg min
1<n<D

rM . (12)

The result of this step is a vector c that contains the sample
indexes corresponding to the minima of each r,

c = arg min
1<n<D

{r}M
k=1 = (c1 , c2 , . . . , cM ) . (13)

Analogously, the algorithm detects the time index dk corre-
sponding the maximum for each vector r

d = arg max
1<n<D

{r}M
k=1 = (d1 , d2 , . . . , dM ) . (14)

The raw PPV index y is obtained from the c and d vectors

y = 2
x(d) − x(c)
x(d) + x(c)

= 2m (15)

where m denotes the amplitude-modulation (AM) index defined
for large carrier double side-band AM.

The y vector may contain erroneous values in regions where
the input pressure signal x(n) is corrupted by artifact. Thus,
the final estimate of the PPV index p̂ is obtained by applying a
recursive filter to process the raw measurements y

p̂n+1|n+1 = p̂n+1|n + Kn+1(yn+1 − p̂n+1|n ) (16)

Domain knowledge about the evolution of the true PPV p is
incorporated into the estimator by constraining the PPV index
to evolve slowly

pn+1 = pn + un (17)

i.e., the PPV index at time n + 1, pn+1 , is equal to the pressure
variation index at the previous time n, pn , within some error un .

The gain Kn+1 is a function of the difference between the
measured and the estimated PPV index based on the model,
en+1 = yn+1 − p̂n+1|n

Kn+1 =




κ1 , if |en+1 | =
∣∣yn+1 − p̂n+1|n

∣∣ ≤ ξ1

κ2 , if ξ1 ≤ |en+1 | =
∣∣yn+1 − p̂n+1|n

∣∣ ≤ ξ2

κ3 , if |en+1 | =
∣∣yn+1 − p̂n+1|n

∣∣ ≥ ξ2
(18)

where the vectors K = (κ1 , κ2 , κ3) and T = (ξ1 , ξ2) are user–
specified parameters. By default, our algorithm implementa-
tion uses K = (1, 0.5, 0) and T = (1, 25). For these specific
K and T, the algorithm discards PPV measurements y when
the residual |en+1 | = |yn+1 − p̂n+1|n | ≥ ξ2 , since the PPV is
not supposed to change so significantly from one respiratory
cycle to the next. Analogously, the algorithm updates the pre-
dicted PPV based on the model using the measurements y
when |en+1 | = |yn+1 − p̂n+1|n | ≤ ξ1 , since this variability can
be considered physiological in nature. For values of the residual
ξ1 ≤ |en+1 | ≤ ξ2 , the predicted PPV based on the model p̂n+1|n
is updated by κ2en+1 = 0.5en+1 .

Note that this recursive filter implements a Kalman fil-
ter where the state pn+1 = pn + un is modeled as a slowly
changing process, and the noisy measurements are linearly re-
lated to the state yn+1 = pn + vn . However, the Kalman gains
Kn+1 are not computed based on the error covariance matrix
and are only approximate. Thus, the piecewise constant gains
K = (κ1 , κ2 , κ3) are suboptimal.

III. ALGORITHM ASSESSMENT

The proposed enhanced algorithm was compared against a
commercial PPV monitoring system (PICCO Pulsion Medical
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TABLE I
DETAILS FOR THE ANIMAL STUDY INCLUDING WEIGHT (WT), BLOOD LOSS DURING INJURY (EBL_INJ), BLOOD LOSS DURING RESUSCITATION (EBL_RES),

CHANGE IN PPV, CARDIAC OUTPUT (CO), AND GLOBAL END-DIASTOLIC (GEDV) VALUES AT BASELINE (BASELINE), DURING INJURY

AFTER THE BLEEDING STOPPED (BLEED STOP), AND AFTER POSTRESUSCITATION (POST RESUS) ARE SHOWN

Systems) and validated prospectively against expert-annotated
ABP signals. The algorithm was developed using pressure sig-
nals from different subjects than those used for performance
assessment. The assessment was measured only once without
any parameter tuning. It is important to note that the underly-
ing algorithm has already been thoroughly assessed as part of
a clinical study by Cannesson et al. [8]. Thus, our objective is
not to conduct a clinical assessment regarding fluid responsive-
ness or to produce Bland–Altman plots of the algorithm against
manually annotated PPV. For this, we refer our readers to [8].
Instead our objective is to present the performance of the al-
gorithm compared to a commercial systems during regions of
abrupt hemodynamic changes.

The database used for our study was composed of 18 ABP
signals sampled at 50 Hz obtained from 18 mechanically venti-
lated crossbred Yorkshire swine (over 40 h of ABP recordings).
These recordings were acquired at the Animal Laboratory of the
Oregon Health and Science University (Portland, OR). The sub-
jects underwent grade V liver injury after splenectomy, while
receiving mechanical ventilation, and general anesthesia with
isoflurane. All subjects in the database underwent a period of
abrupt hemodynamic change after an induced grade V liver in-
jury involving severe blood loss resulting in hemorrhagic shock,
followed by fluid resuscitation with either 0.9% normal saline or
lactated ringers solutions. Trained experts manually calculated
PPV at five time instances during the period of abrupt hemo-
dynamic changes. These expert manual annotations provide a
“gold-standard” for algorithm comparison and validation. Ta-
ble I shows the details of the animal study. The study protocol
was reviewed and approved by the Institutional Review Board
at Oregon Health and Science University.

IV. RESULTS AND DISCUSSION

Fig. 1 shows a comparison of the proposed enhanced PPV
algorithm (dark grey) against a commercial PPV monitoring
system (light grey) for two of the first nine subjects (subjects
1 and 3 where the PICCO system performed best, as listed in
Table II). For each subject the top plot shows the ABP signal and
the bottom plot shows the estimated PPV using both algorithms.
Five “gold-standard” PPV manual annotations calculated by
trained experts during periods of abrupt ABP changes are shown
as black squares on the bottom plot of each subject. Note that
both systems are consistent for the most part during periods
where the ABP signal is relatively stationary. The proposed
algorithm has better performance than the commercial PPV
monitoring system during periods of abrupt ABPM changes.
Fig. 2 shows the same type of figure for subjects 2, 4, 5, 13, 15,
and 19.

Figs. 1(a) and 2(a) show examples where the ABP signal
was severely corrupted by artifact. In these cases, the com-
mercial PPV system fails to provide an adequate PPV value.
Note, however, how the proposed enhanced algorithm is ro-
bust to these types of artifact. In these regions, the algo-
rithm discards the PPV measurements y because the residual
|en+1 | = |yn+1 − p̂n+1|n | ≥ ξ2 . Since the PPV is not supposed
to change so significantly from one respiratory cycle to the next,
the algorithm performs a time update (model-based prediction)
and no measurement update.

The PICCO system performed well in regions of normal
hemodynamic changes. However, its algorithm failed to accu-
rately estimate the PPV during the periods between the injury
and fluid resuscitation in all the subjects, and consequently, it
failed to predict fluid responsiveness during the periods of severe
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Fig. 1. Comparison of (bottom plot, dark grey) proposed enhanced PPV algorithm against (bottom, light grey) commercial PPV monitoring system for subjects
(a) 1 and (b) 3 listed in Table II. The PICCO system had the best performance on these two subjects. For each subject, the top plot shows the ABP signal and the
bottom plot shows the estimated PPV using both algorithms. Five “gold-standard” PPV manual annotations calculated by trained experts during periods of abrupt
ABP changes are shown as black squares on the bottom plot of each subject. Note that both systems are consistent for the most part during periods where the
ABP signal is relatively stationary. The proposed algorithm has better performance than the commercial PPV monitoring system during periods of abrupt ABPM
changes.

blood loss. These results indicate that while the PICCO system
is a useful tool to estimate PPV and predict fluid responsiveness
in situations where normal hemodynamic changes are expected,
it may not provide accurate PPV values in certain situations.

As shown in Figs. 1 and 2, the proposed algorithm is capable
of accurately estimating the PPV index during periods of signifi-
cant hemodynamic changes and is robust to artifact. Note that in
all the subjects, the PPV estimates obtained with the algorithm
are consistent with the PPV expert annotations.

Table II provides a quantitative measure of the difference in
performance of the PICCO system and the proposed algorithm
both before and after post-filtering, by providing the absolute er-
ror for each estimate versus the corresponding “gold-standard”
data point for all 18 subjects. As mentioned earlier, the PICCO
system performs well during normal changes in hemodynamics.
This is illustrated by the low absolute error reported for points
1 and 5 on all subjects in the table. However, during periods
of rapid hemodynamic changes (points 2–4), the absolute error
is much larger for the PICCO system estimate than the pro-
posed algorithm. Furthermore, the overall absolute error over
all subjects is 2083.19 for the PICCO system, which is nearly
four times greater than the error of 555.18 from the proposed
algorithm.

Our results show that the new enhanced algorithm to estimate
PPV improves the performance of our previously published al-
gorithm adopted by Philips Medical Systems as part of their
Intelivue MP70 Monitors. The previous algorithm has already
been thoroughly validated in a clinical study and has been found
to be both accurate and useful in clinical environments. How-
ever, there is a need to improve upon this algorithm currently
implemented as part of a commercial system, particularly to

make it more robust to artifact and accurate during regions of
abrupt hemodynamic changes.

As mentioned in Section I, despite the availability of a com-
mercial devices for PPV monitoring, the need for additional in-
dependent PPV estimation algorithms are significant for several
reasons. Researchers have found that these commercial systems
are not always accurate. This is the case in this situation. Ad-
ditionally, the enhanced algorithm presented in this paper can
be implemented and used to estimate PPV in data already col-
lected. We provide a detailed description to ensure that other
researchers and manufacturers can implement and use it for re-
search purposes and independently validate the results obtained
using commercial PPV monitoring systems.

A. Study Limitations

Instead of the typical statistical results (and Bland–Altman
plots), in our results, we document the absolute error for each
point and time domain plots, since it is important to capture
how the algorithms perform at each instance after the transient
response. For instance, it is important to know whether the al-
gorithms fail after the high-to-low or during the low-to-high BP
transitions. Consequently, we decided to report the results of
the absolute error at each time instant and corresponding time-
domain plots of the transient characteristics, since this provides
more information to assess where the algorithms have more dif-
ficulty estimating PPV during abrupt hemodynamic changes.
The typical methodology employed for clinical validation of
PPV algorithms is not appropriate in this case since is does not
provide information regarding failures due to abrupt hemody-
namic changes.
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TABLE II
COMPARISON OF THE PICCO SYSTEM VERSUS THE PROPOSED ALGORITHM BEFORE (PPU) AND AFTER (PPF) POSTFILTERING AGAINST

THE GOLD-STANDARD PPV MANUALLY ANNOTATED BY TRAINED EXPERTS SHOWING THE ABSOLUTE ERROR
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Fig. 2. Comparison of the proposed PPV algorithm (dark grey) against a commercial PPV monitoring system (light grey) for subjects listed in Table II. For each
subject the top plot shows the ABP signal and the bottom plot shows the estimated PPV using both algorithms. Five “gold-standard” PPV manual annotations
calculated by trained experts during periods of abrupt ABP changes are shown as black squares on the bottom plot of each subject. Note that both systems are
consistent for the most part during periods where the ABP signal is relatively stationary. The proposed algorithm has better performance than the commercial PPV
monitoring system during periods of abrupt ABPM changes.
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The PICCO algorithm is proprietary and to our knowledge
there is no published paper that thoroughly describes the algo-
rithm used by the PICCO system. Since the algorithm imple-
mented in the PICCO system has not been described in a manner
that ensures reproducibility by the research community, we have
not been able to implement it, and we do not know exactly how
it estimates PPV or whether the required calibration for cardiac
output impacts the PPV. The PPV PICCO results presented in
this paper where obtained directly using the PiCCO system.

An important point to emphasize is that both the PICCO
system and our algorithms are trying to estimate PPV (as defined
by the PPV formula). However, this formula cannot be computed
automatically, and consequently, a complex algorithm must be
used to get the best “estimate” of PPV. It is the algorithms used
to estimate PPV that are different, not the formula used to define
PPV.

V. CONCLUSION

In this paper, we described a new enhanced algorithm to
estimate PPV that improves the performance of our previously
published algorithm adopted by Philips Medical Systems as part
of their Intellivue MP70 Monitors. The previous algorithm has
already been thoroughly validated in a clinical study and has
been found to be both accurate and clinically useful. However,
there is a need to improve upon this algorithm currently imple-
mented as part of a commercial system, particularly to make
it more robust to artifact and accurate during regions of abrupt
hemodynamic changes. Estimation of PPV is a very significant
problem, since PPV has been found to be one of the best pre-
dictors of fluid responsiveness. Despite the significance of PPV,
currently there are no publicly available validated algorithms
that can be used to estimate it on recorded ABP signals. Ad-
ditionally, commercial hemodynamic monitoring systems with
PPV monitoring capabilities may not work well during regions
of abrupt hemodynamic changes. This paper has three main con-
tributions: 1) a description of a robust new method to estimate
PPV from ABP signals, 2) the assessment of the robustness
of the PICCO system during regions of abrupt hemodynamic
changes, and 3) a prospective validation and comparison of the
proposed algorithm against the PICCO system.

Our validation results indicate that this algorithm has superior
performance compared to commercial hemodynamic monitor-
ing systems with PPV capabilities. The assessment results show
that the proposed algorithm is capable of accurately estimat-
ing the PPV index during periods of significant hemodynamic
changes. The commercial system used as a benchmark failed to
accurately estimate the PPV during these periods. Additionally,
our proposed PPV algorithm can be implemented and used to
estimate PPV in data already collected and archived.

It is important to emphasize that a clinical validation study
assessing the ability of the proposed enhanced algorithm to
monitor fluid responsiveness in the operating room in situations
involving abrupt hemodynamic changes still needs to be con-
ducted. This would require the proposed algorithm to be first
adopted as part of a commercial system as was the case with the
underlying automatic PPV algorithm.
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