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Abstract Extracellular microelectrode recordings (MER)
often contain artifact from a variety of sources that
confound traditional signal-processing techniques that
require stationary signal segments. We designed an
algorithm to locate the longest stationary segment of
MER signals. In this paper we provide a description of
the segmentation algorithm and its performance assess-
ment. Simulation results demonstrate that the automatic
segmentation algorithm we proposed is capable of
accurately identifying the boundaries of the longest
stationary segments in MER signals. In our simulation
study the segmentation algorithm correctly identified the
boundaries of the longest MER stationary segments in
99.5% of the cases.
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1 Introduction

Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disease and affects over 500,000
people in the USA and about 4–5% of people over 85 [3,
4]. Deep brain stimulation (DBS) of the internal segment
of the globus pallidus (GPi) and the subthalamic nucleus
(STN) have both shown to dramatically improve
symptoms of PD and is increasingly being used for the
treatment of advanced PD patients whose condition has
deteriorated or who are no longer responsive to drug
therapy. One of the critical challenges to neurosurgeons
who perform stereotactic neurosurgery in PD patients is
locating the target structure within the brain. Extracel-
lular microelectrode recordings (MER) are commonly

used during surgery to locate the STN and GPi targets
because of its more precise target and physiological
localization than MRI [6]. Despite the wide use of MER
to locate the DBS targets and the dramatic clinical
improvements of DBS, current methods of MER anal-
ysis still rely on manual techniques that are subjective,
non-automatic, and cumbersome [1, 2, 5, 6]. During
surgery the neurosurgeon typically analyzes the MER
signals by examining the time–domain behavior of the
signal on an oscilloscope (or equivalent) while listening
to the signal through conventional speakers. Although
modern surgical workstations provide some tools for
MER signal semi-automatic analysis and processing, the
techniques are cumbersome, need manual tuning, and
require the neurosurgeon to mentally keep track of how
the recordings change as the microelectrode moves
through different brain structures. Furthermore, MER
signals often contain artifact from a variety of sources
such as patient movement and equipment noise. These
sources confound signal processing and analysis tech-
niques that require stationary signal segments.

In this paper we describe an automatic algorithm
designed to identify the longest stationary segment in the
input MER signal. The automatically selected segment
can be considered to be the segment that most accurately
represents the characteristics of the neural structure.
This segment can be used for further automatic analysis
such as power spectral density estimation and visuali-
zation.

Automatic segmentation of MER is of clinical sig-
nificance because current pre- and post-operative anal-
ysis methods do not reliably remove artifacts
automatically. Hence, automatic segmentation of MER
shows promise in being pivotal as a tool needed for
improving consistency and accuracy of MER analysis.

1.1 Problem formulation

Let x = (x1, x2, ..., xN)
T be an arbitrary MER sig-

nal composed of M locally wide sense stationary
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segments, fsgMl¼1 ¼ s1;N1
; s2;N2

; . . . ; sk;Nk
; . . . ; sM;NM

� �
;

where {Nl}l=1
M denotes the number of samples in each of

the segments. The objective of MER segmentation is to
select the segment sk;Nk

such that Nk ‡ {Nl}l=1
M . Practi-

cally, the duration of the selected segment sk is con-
strained to be longer than 3 s, since this is considered the
shortest length necessary for the surgeon to reliably
analyze a segment.

2 Algorithm description

The following sections describe our algorithm in a se-
quence of four steps.

2.1 Normalization and frame segmentation

The MER signal x is normalized by subtracting the
mean and dividing by the standard deviation,

xn ¼
x� lx

rx
: ð1Þ

The normalized MER xn is segmented into S non-
overlapping frames fvlg

S
l¼1 of equal time duration t,

fvlg
S
l¼1 ¼ fv1; v2; . . . ; vk; . . . ; vSg: ð2Þ

The segment time duration t is user specified (t > 3 s).

2.2 Variance calculation

The autocorrelation sequence rx(l) is estimated for each
of the frames fvkg

S
l¼1 using the biased estimator of the

autocorrelation r̂xðlÞ in order to guarantee that the
estimate is positive semi-definite. The variance of the
covariance ĉxðlÞ is then estimated from r̂xðlÞ for each
frame vk according to the following equation,

varfĉxð0Þg ¼
2

L

X1

l¼�1
ĉ2xðlÞ ¼

2r4

L

X1

l¼�1
r̂2xðlÞ: ð3Þ

The variance of the covariance is used instead of the
estimated sample variance or estimated variance of the
sample variance because it does not assume independent
observations. In the case of N independent normal
observations, the variance of the sample variance ŝ2

depends on r and N,

varfŝ2g � 2r4

N
: ð4Þ

Since fvlg
S
l¼1 have equal duration, estimating the vari-

ance of the sample variance is equivalent to estimating
the sample variance. However, when the samples cannot
be assumed to be independent normal observations, Ni

(the equivalent number of independent observations) is
less than the number of samples in the segment
(Ni < N) and Eq. 4 cannot be applied, i.e., the variance
of the covariance takes into account the number of

independent observations in a given segment vk: The
output of this step is a vector with the variances of the
autocovariances of fvkg

S
l¼1; denoted t;

t ¼ var ĉv1
ð0Þ

n o
; var ĉv2

ð0Þ
n o

; . . . ; var ĉvP
ð0Þ

n oh iT

¼ ðv1; v2; . . . ; vP ÞT
:

ð5Þ

2.3 Sequential hypothesis testing

The algorithm uses a test statistic analogous to the
classical F test for determining whether two random
samples have equal variance,

F ¼ vN1

vD1

; . . . ;
vNk

vDk

; . . . ;
vNP�1

vDP�1

� �T

¼ F1; F2; . . . ; Fk; . . . ; FP�1ð ÞT
ð6Þ

vNk ¼ maxfvk; vkþ1gP�1
k¼1 ð7Þ

vDk ¼ minfvk; vkþ1gP�1
k¼1 ð8Þ

The test statistic used to establish transition instances
tk is determined by calculating the ratios of the variances
of the covariances for each two adjacent segments. The
larger variance of the covariance values is placed in the
numerator. When the test statistic F is greater than the
critical value Fc the algorithm records a transition. Al-
though the general form of this statistic is identical to
that used in the classical F test, there are two important
differences. First, in order to account for the temporal
correlation present in neuronal signals, the variance of
the autocovariance is used instead of the sample vari-
ance. Secondly, the critical value Fc was empirically
calculated based on Monte Carlo simulations (i.e.,
Fc = 1.2) as opposed to being calculated from a theo-
retical distribution based on the degrees of freedom.

2.4 Segment selection

From the transition instances tk the algorithm constructs
a vector t = (t1, t2, ..., tM+1)

T and the element by ele-
ment differences �t,

rt ¼ ðt2 � t1; . . . ; tmþ1 � tm; . . . ; tMþ1 � tMÞT: ð9Þ

The longest wide stationary segment ( sk;Nk
such that Nk

‡ {Ni}l=1
M ) is selected from �t,

sk;Nk
¼ argmax

m
rt: ð10Þ

3 Performance assessment

With real MER signals there is no gold standard that
can be used to assess the accuracy of automatic
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segmentation algorithms. In order to overcome this
limitation, we designed a nonstationary MER signal
synthesizer intended to be used in MER segmentation
applications based on an statistical model of MER sig-
nals. The algorithm was assessed quantitatively on syn-
thetic MER signals.

We modeled nonstationary MER signals x = [x1, x2,
..., xN]

T as a progression of locally stationary segments
fsgMl¼1 ¼ fs1;N1

; s2;N2
; . . . ; sk;Nk

; . . . ; sM;NM
g: Each station-

ary segment of the MER signal was approximated by an
p-th order autoregressive process AR(p). A block dia-
gram of the MER synthesis system is given in Fig. 1a. A
set of white Gaussian noise signals of different time
durations s is generated by a random number generator.
The time duration is determined by a Poisson random

variable with mean k. Each white Gaussian signal is then
multiplied by a uniformly distributed random variableffiffi
ð

p
rÞ � Uð0; 1Þ: The result is a set of white Gaussian

random signals {wl}l=1
M , each with a different variance r

and time duration s. Each wl is passed through a syn-
thesis or coloring filter H(z) to introduce dependence in
the white noise input,

HðzÞ ¼ 1

AðzÞ ¼
1

1þ
PP

k¼1 akz�k
: ð11Þ

The model parameters {al}l=1
P =(a1, a2, ..., aP) and the

model order P were estimated from MER signals in
order to match the second order statistics of real MER
signals. We used two representative sets of MER signals

Fig. 1 Illustration of the segmentation process performed by the
algorithm on synthetic MER signals with different transition times.
a Block diagram of the MER signal simulator. b Algorithm’s
performance as a function of the minimum variance difference
between two adjacent segments. c The top plot shows a synthetic
MER signal with transitions at 10, 14, 17, 21, 27 (given by the
MER simulator). The middle plot shows the variance of the

autocovariance calculated by the segmentation algorithm, and the
plot at the bottom shows the transition borders detected by the
algorithm using a critical value of 1.2. The selected segment is
shown in light gray. d Example of segmentation process performed
by the algorithm on a synthetic MER signal with transition times
equal at 5, 12, 19, 26
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from two different patients to estimate the model
parameters of each region and constructed a 10 · 50
matrix A containing two rows for each of the 5 brain
regions, each row consisting of 50 model parameters,

A ¼

a1;1 a1;2 . . . a1;50
a2;1 a2;2 . . . a2;50

..

. ..
. . .

. ..
.

a10;1 a10;2 . . . a10;50

0

BBB@

1

CCCA
: ð12Þ

Since segmentation must be performed on MER signals
from all the five different brain regions, the simulator
selects randomly a row of the matrix A each time it has
to synthesize a signal. The five different MER regions
estimated were reticular thalamus (RT), zona incerta
(ZI), fields of forel (FF), STN, and substantia nigra
reticulata (SNR). These five different regions are

typically all encountered during stereotactic DBS sur-
gery in the STN. The stationary segments {s}l=1

M drawn
from different distributions are concatenated to generate
the realizations of nonstationary MER.

The model parameters {al}l=1
P =(a1, a2, ..., aP) were

estimated considering both forward and backward pre-
dictors and minimizing the combined error,

efb
P ¼

XNf

n¼Ni

jef ðnÞj2 þ jebðnÞj2
h i

ð13Þ

efb
P ¼

XNf

Ni

jâHxðnÞ2j þ jâHx�ðnÞj2
h i

; ð14Þ

where the first element of â is 1. The minimization of the
combined error results in a set of normal equations, which
can be solved efficiently to obtain the model parameters.

Fig. 2 Demonstration of automatic stationary segmentation of real MER signals using the proposed segmentation algorithm
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Figure 1c, d illustrates the segmentation process
performed by the segmentation algorithm in two dif-
ferent synthetic realizations of MER.

A simulation was performed in order to determine
the optimal critical value for Fc. The objective of this
simulation study was optimized to the algorithm’s per-
formance as a function of Fc. The value of Fc was
incremented from 1 to 2 in steps of 0.01. For each Fc, we
synthesized 1,000 MER signals, applied the segmenta-
tion algorithm, and evaluated its performance. The
performance was defined as the number of times the
algorithm selected the correct segment divided by 1,000.
Based on this simulation we concluded that Fc = 1.2
results in the best performance.

In order to assess the algorithm we performed a
simulation study to determine the minimal variance be-
tween two segments that was correctly differentiated as a
transition instant (i.e., resolution). The MER simulator
was used to generate the synthetic MER signals for this
study. We evaluated the algorithm’s performance by
incrementing the value of rm from 0.001 to 0.2. Fig-
ure 1b shows the performance of the algorithm as a
function of the minimum variance difference allowed
between two adjacent segments (resolution). The plots
show an algorithm performance close to 100% for res-
olutions as low as 0.1.

In addition to assessing the algorithm on synthetic
MER signals, we tested the algorithm on real MER
signals. Figure 2a–c show three representative examples
demonstrating the segmentation performed by the
algorithm on real MER signals. These three examples of
segmentation of real MER signals where chosen because
the segmentation was particularly difficult due to the
small variance changes between the segments.

4 Conclusions

We described an automatic stationary segmentation
algorithm for MER signals. The algorithm was assessed

using synthetic MER signals. The simulation study
performed on synthetic MER signals showed that the
algorithm was capable of locating the longest stationary
segment 99.5% of the time. We showed representative
examples where the proposed automatic algorithm seg-
menting synthetic and real MER signals. The proposed
automatic algorithm enables to locate the longest sta-
tionary segment present in the MER signal more
objectively and faster than the current manual tech-
niques based on visual inspection. Automatic segmen-
tation algorithms are of significant clinical relevance
because more objective, consistent and universal stan-
dards are needed to improve selection of optimal targets
for DBS implantation and ablation, while minimizing
microelectrode recording and surgery time, cost and
possible surgical complications.
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