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Adaptive Modeling and Spectral Estimation of
Nonstationary Biomedical Signals Based on Kalman

Filtering
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Abstract—We describe an algorithm to estimate the instantaneous power
spectral density (PSD) of nonstationary signals. The algorithm is based on a
dual Kalman filter that adaptively generates an estimate of the autoregres-
sivemodel parameters at each time instant. The algorithm exhibits superior
PSD tracking performance in nonstationary signals than classical nonpara-
metric methodologies, and does not assume local stationarity of the data.
Furthermore, it provides better time-frequency resolution, and is robust to
model mismatches. We demonstrate its usefulness by a sample application
involving PSD estimation of intracranial pressure signals (ICP) from pa-
tients with traumatic brain injury (TBI).

Index Terms—Intracranial pressure, Kalman filter, linear models, spec-
tral estimation, traumatic brain injury.

I. INTRODUCTION

Currently, power spectral density (PSD) estimation of physiologic
signals is performed predominantly using classical techniques based
on the fast Fourier transform (FFT). Nonparametric methods such as
the periodogram and its improvements (i.e., Barlett’s, Welch’s, and
Blackman-Tukey’s methodologies [1]–[4]) are based on the idea of es-
timating the autocorrelation sequence of a random process from mea-
sured data, and then taking the FFT to obtain an estimate of the power
spectrum. The main two advantages of these techniques are their com-
putational efficiency, due to the numerical efficiency of the FFT algo-
rithm, and that they do not make any assumptions about the process
except for its stationarity. This makes them the methodology of choice,
particularly in situations where long data records need to be analyzed
and there is no clear model for the process. Furthermore, the availability
of long data records enables one to improve their statistical properties
by averaging or smoothing. However, these techniques have some lim-
itations. They require stationarity of the segments studied, do not work
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well for short data records, and have limited frequency resolution. Since
physiologic signals are nonstationary in nature, these techniques are
applied following the methodology of the short-time Fourier transform
(STFT), where nonparametric methods are applied to short overlapping
segments which are assumed to be stationary. This approach has also
its limitations. It imposes a piecewise stationary model on the data and,
since local stationarity requires the analysis segments to be short in du-
ration, they have limited time-frequency resolution.

Time-frequency resolution can be improved by using parametric
methods of PSD estimation. The parametric approach is based on
modeling the signal under analysis as a realization of a particular
stochastic process and estimating the model parameters from its
samples. In the absence of a priori knowledge about how the process
is generated, parametric PSD is generally performed assuming an
autoregressive (AR) model [4]. This is a popular assumption for
several reasons: 1) many natural signals such as speech, music or
seismic signals have an underlying autoregressive structure; 2) in
general, any signal—not necessarily AR in nature—can be modeled
as an AR process if a sufficiently large model order is selected; 3)
the all-pole structure of AR enables for good spectral peak matching,
which makes it a good model candidate for situations where we are
more interested in the spectral peaks than valleys; and 4) estimation
of the model parameters involves the solution of a linear system of
equations, which can be solved efficiently. Even though parametric
PSD can improve the frequency resolution, the current techniques
for PSD estimation based on AR models (i.e., autocorrelation, co-
variance, modified convariance, and Burg’s methods [5], [6]) assume
stationarity. To analyze nonstationary signals they must also assume
the signal is locally piecewise stationary.

We describe a methodology to estimate the time-varying AR model
parameters of nonstationary signals using an adaptive Kalman filter.
This methodology produces instantaneous estimates of PSD, improved
time-frequency resolution, and enables for nonstationary spectral anal-
ysis in situations where data records are too short and the local sta-
tionary model does not work well. The reliability of the algorithm was
tested with synthetic data generated from different models (AR, MA,
ARMA, and harmonic), and with real data from physiologic pressure
signals. Following the description of this methodology, we demonstrate
its usefulness by a sample application involving PSD estimation of in-
tracranial pressure signals (ICP) from patients with traumatic brain in-
jury (TBI).

II. METHODS

The adaptive Kalman filter algorithm we propose for instantaneous
PSD estimation assumes an underlying autoregressive structure of the
data. We chose an underlying AR model structure because of its in-
trinsic generality and peak matching capabilities. These are important
properties for the analysis of physiologic signals, since we are usually
more interested in estimating the frequency at which the formant fre-
quencies (peaks) occur than the valleys. Starting from this assumption,
we modeled a given physiologic signal with a recursion of the form

x(n) =

P

k=1

akx(n� k) + w(n) (1)

where x(n) is the physiologic signal under analysis at instant n,
fakg

p

k=1 are the model parameters, fx(n � k)gpk=1 are delayed
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samples of the signal, and w(n) is assumed to be a random sequence
independent and normally distributed with zero mean. Equation (1)
can be generalized by allowing the model coefficients fakg

p

k=1 to be
time-variant. The estimation problem within the context of nonsta-
tionary processes yields naturally to the discrete Kalman filter (DKF)
[7]–[9].

In order to use the DKF, we must have a signal model in state-space
form, and the state of the system evolves as a first-order difference
equation, and must be estimated from noisy observations. The general
form of the state-space model for the linear DKF is given by [8], [10]

x(n) =A(n� 1)x(n� 1) +w(n)

y(n) =H(n)x(n) + v(n) (2)

where x(n) is the state of the system, A(n � 1) is the transition or
system matrix, H(n) is the observation matrix, y(n) is the vector of
observations, andw(n) and v(n) are zero-mean white Gaussian noise
processes representing system and observation noise, respectively. The
system noise and the process noise are assumed to be independent. If
the problem can be formulated in state-space according to (2), and if we
knowA(n� 1),H(n), and the covariance matrix ofw(n) and v(n),
then we can use the DKF to estimate the state of the system optimally
according to the Kalman recursion.

A. Signal Model in State-Space

Since our signal model (1) is a pth-order difference equation, we can
transform it to a system of difference equations by defining the state of
the system as a p-dimensional vector

x(n) =

x(n)

x(n� 1)
...

x(n� p+ 1)

: (3)

This enables us to rewrite (1) as a first-order difference equation with
time-varying model parameters, and enables us to create a state-space
model for the DKF

A(n) =

a1(n) a2(n) . . . ap(n)

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 0

(4)

x(n) =A(n� 1)x(n� 1) +w(n)

y(n) =Hx(n) + v(n): (5)

The measurement matrix is H = (1 0 . . . 0). However, in order for
this state-space model to be useful we need a way to estimate the vector
of time-varying coefficients a(n) = (a1(n) a2(n) . . . ap(n))

T cor-
responding to the first row of the transition matrix at time n, A(n).

B. Dual Kalman Filter

The vector of time-varying coefficients that made the first row of
the transition matrix a(n) can also be estimated using a DKF. This is
referred as a dual Kalman filter, that is, two DKFs working in parallel
to estimate the model parameters and the state of the system [11]–[13].

The estimation of the model parameters a(n) can be formulated in
state space as follows:

a(n) =���a(n� 1) + e(n)

x(n+ 1) =xT (n)a(n) + q(n): (6)

where ��� is a user specified diagonal matrix with entries (�ij)i=j
corresponding to the correlation between a(n) and a(n � 1), which
control the adaptation speed and frequency tracking capabilities of
the algorithm. For biomedical signals, where the model parameters
change slowly, values close to 1 work well (e.g., 0.995). In the case of
(�ij)i=j = 1, the system equation becomes a(n) = a(n� 1)+ e(n).
This is a simple Markov process where the vector coefficients evolve
following a random walk. The adaptation speed is controlled by
the covariance of e(n). There is a tradeoff between high adaptation
speed (fast tracking) and variance of the estimates. The measurement
equation of the model, x(n + 1) = xT (n)a(n) + q(n) implements
a linear predictor, where the signal at time n + 1 is estimated from
previous values of n according to

x(n+ 1) =xT (n)a(n) + q(n)

=

p

k=1

ak(n)x(n� k + 1) + q(n): (7)

In the state-space formulation given by (6), the model parameters a(n)
become state variables. The optimum linear estimate of state of the
system a(n) can be estimated recursively according to

â(njn� 1) =���â(n� 1jn � 1) (8)

z(n) =x(n+ 1) (9)

ẑ(n) =xT (n)â(njn � 1) (10)

â(njn) = â(njn � 1) +K(n) [z(n)� ẑ(n)] (11)

P(njn� 1) =���P(n� 1jn� 1)���T +Qe(n) (12)

���(n) =x(n)TP(njn� 1)x(n)T (13)

K(n) =P(njn� 1)x(n) [���(n) +Ql(n)]
�1 (14)

P(njn) = I�K(n)xT (n) P(njn� 1) (15)

where â(njn� 1) = ���â(n� 1jn� 1) is the best estimate of the state
(i.e., AR model parameters) without incorporating the observation at
time n, just based on the model structure we imposed on the evolution
of a(n) (prediction), and ẑ(n) = xT (n)â(njn�1) is the best estimate
of the the measurement z(n) = x(n + 1) based on the model. The
optimum estimate of the state at time n incorporating the measurement
at timen is given by â(njn) = â(njn�1)+K(n)[z(n)�ẑ(n)], which
is composed of two terms: the best estimate of the state without the
measurement at time n, and a weighted difference of the observation
at time n and the best estimate of this observation (correction). The
weighting factor K(n) is calculated optimally following the Kalman
recursion, and is referred to as the Kalman gain [7], [8], [10].

C. Instantanous PSD Estimation

The theoretical power spectrum of pth-order stationary autoregres-
sive process is given by

Px(e
jw) =

jb(0)j2

1 + p

k=1
ake�jkw

2
: (16)

If b(0) and fagpk=1 can be estimated from data, then we can form an
estimate of the power spectrum of a stationary process as

P̂x(e
jw) =

b̂(0)
2

1 + p

k=1
âke�jkw

2
: (17)

Since the dual Kalman filter we propose provides estimates of fagpk=1
at each time instant, the nonstationary power spectrum is given by

P̂x(e
jw

; n) =
b̂(0; n)

2

1 + p

k=1
âk(n)e�jkw

2
: (18)
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Fig. 1. Representative results of the first comparative study between a nonparametric methodology (Welch’s) and the proposed DKF PSD estimator. (a) Plot shows
an example of the 10-s ICP segment (light grey) and the 2-s subsegment used for this simulation. (b) Plot of the 2-s subsegment highlighted in (a). (c) Welch’s
PSD (dark) and DKF PSD (light) estimates corresponding to the 10-s segment. (d) Welch’s PSD (dark) and DKF PSD (light) estimates on the 2-s subsegment. The
thin line corresponds to Welch’s estimate based on the 10-s segment. (e) Welch’s PSD (dark) and DKF PSD (light) estimates in the 10-s segment with y-axis in dB
scale. (f) Welch’s PSD (dark) and DKF PSD (light) estimates in the 2-s subsegment with y-axis in dB scale. The dotted line is the Welch estimate based on the 10 s.

Therefore, the nonstationary PSD given the instantaneous estimates of
model parameters a(n) can be computed according to

P̂x(e
jw

; n)KM =
1

jFFT [�a(n)]j2
(19)

�a(n) = 1� a(n)T : (20)

III. RESULTS

We tested the reliability of the instantanous PSD estimation algo-
rithm with synthetic data generated from different models (AR, MA,
ARMA, and harmonic), and with real data from physiologic pressure
signals. In the following, we demonstrate its usefulness by a sample
application involving PSD estimation of ICPs from patients with trau-
matic brain injury (TBI).

A. Subjects and Material

This study included ICP signals from patients with significant head
injuries who were admitted to the pediatric intensive care unit at Doern-
becher Children’s Hospital. ICP was monitored continuously using a
ventricular catheter or parenchymal fiber-optic pressure transducer (In-
tegra NeuroCare, Integra LifeSciences, Plainsboro, NJ). The ICP mon-
itor was connected to a Philips Merlin CMS patient monitor (Philips,
Best, Netherlands) that sampled the ICP signals at 125 Hz. An HPUX
workstation automatically acquired these signals through a serial data
network and they were stored in files on CD-ROM. Patients were man-
aged according to the standards of care in pediatric intensive care unit
at Doernbecher Children’s Hospital. The data acquisition protocol was
reviewed and approved by the Institutional Review Board at Oregon
Health and Science University, and the requirement on informed con-
sent was waived.
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Fig. 2. Representative results of the second comparative study between a nonparametric methodology (Welch’s) and the proposed PSD estimator based on the
DKF. (a) ICP segment during a period of hypertension (ICP > 25 mmHg) and the reduction in mean ICP after mechanical hyperventilation (approximately
800 s). (b) Spectrogram of the ICP signal centered around the time of therapeutic intervention (hyperventilation). In the spectrogram, we can clearly see the
cardiac components around 2 Hz and the respiratory component (0.1–0.55) Hz. In the respiratory component, we can note a period of spontaneous breathing
(approximately 0–225 s), and the period of mechanical hyperventilation (approximately >225 s). (c) Spectrogram of the ICP signal centered around the time of
therapeutic intervention (hyperventilation) generated using the nonparametric PSD estimator with a window of 15 s. (d) Spectrogram of the ICP signal centered
around the time of therapeutic intervention (hyperventilation) generated using the instantaneous PSD estimate based on the DKF. The time resolution is of 1 sample.
We can appreciate a much better frequency resolution in this case. (e) PSD plot showing the instantaneous PSD estimates (thin light lines) before and after the
intervention and their average (thick lines). The average before the change is shown in grey and the average after the change is the black thick line.

B. Comparative Studies

We compared PSD estimates obtained with the proposed Kalman
PSD estimation algorithm with those generated by classical nonpara-
metric estimation techniques. For the purposes of this paper, Welch’s
method of nonparametric PSD estimation was used as the methodology
representing the nonparametric methods.

The first comparison was aimed at determining the quality of the
PSD estimates of a nearly stationary ICP signal. The PSD of the signal
was estimated with Welch’s PSD estimator and with the proposed
Kalman PSD estimator. PSDs of locally stationary 10-s segments
obtained from ICP signals were estimated using both methodologies.
Then, 2-s subsegments from these 10-s segments were selected and
both methodologies were applied to estimate the PSD corresponding

to the 2-s subsegments. The objective of this study was to compare
the accuracy of the PSD estimates produced by both methodologies
in the 2-s subsegments as estimates of the PSDs estimated in the 10-s
segments.

The second study was aimed at comparing the time-frequency res-
olution of the spectrograms generated using both methodologies. For
this purpose, a set of nonstationary ICP signals were used. We selected
ICP segments from patients who were undergoing a period of intracra-
nial hypertension (nonstationary conditions), and to whom a therapy
of mechanical hyperventilation was applied as a first therapy to re-
duce elevated ICP. We compared both methodologies at the task of de-
termining the time instant at which the hyperventilation intervention
started and determining the change in respiratory frequency applied
based exclusively on the ICP spectrogram.
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In Fig. 1, we show representative results of the first comparative
study between a nonparametric methodology (Welch’s) and the pro-
posed PSD estimator based on the DKF. For the purposes of this
study, Welch’s method was always used with the maximum possible
window length, since this yields to the best frequency resolution.
Fig. 1(a) shows the 10-s ICP segment (light grey) and the 2-s sub-
segment subsegment used in this simulation. Fig. 1(b) show a plot
of the 2-s subsegment highlighted in Fig. 1(a). In Fig. 1(c), we show
the Welch’s PSD (dark) and DKF PSD (light) estimates in the 10-s
segment, and in Fig. 1(d) we show the results of both methodologies
on the 2-s segment. The dotted line corresponds the Welch estimate
based on the 10-s segment. Fig. 1(e) and Fig. 1(f) show Welch’s
PSD (dark) and DKF PSD (light) estimates in dB scale. In Fig. 1(f),
the dotted line corresponds to the Welch estimate based on the 10 s.
From this results, we can conclude that the PSD estimate generated
by our proposed algorithm has better frequency resolution. We also
note that the estimate based on the 2-s segment using the Kalman
PSD algorithm has even better frequency resolution than Welch’s
PSD estimate based on 10 s. Observing the plots in dB scale, we
can also see how the Kalman PSD estimate does not have sidelobes
caused by windowing effects and is smoother.

Results from the second simulation are shown in Fig. 2. In this figure,
we show representative results of the second comparative study be-
tween a nonparametric PSD estimator and the proposed PSD estimator
based on the DKF, which consisted in comparing the two methods
time-frequency resolution for nonstationary signals. Fig. 2(a) shows
the ICP segment during a period of hypertension (ICP > 25 mmHg)
and the reduction in mean ICP after mechanical hyperventilation (ap-
proximately 800 s). In Fig. 2(b), we show the spectrogram of the ICP
signal centered around the time of therapeutic intervention (hyperven-
tilation) using a 40-s window. Examining this spectrogram we can see
the cardiac component around 2 Hz and the respiratory component in
the range of 0.1–0.55 Hz. In the evolution of the respiratory component,
we can note a period of spontaneous breathing (approximately 0–225 s)
and a period of mechanical hyperventilation (>225 s). Fig. 2(c) shows
the spectrogram of the ICP signal centered around the time of ther-
apeutic intervention (hyperventilation) generated using nonparametric
PSD estimation with a window of 15 s with 50% overlap, which enables
us to know the time instant of the therapeutic intervention with a time
resolution of 15 s. In Fig. 2(d), we show spectrogram of the ICP signal
centered around the time of therapeutic intervention (hyperventilation)
generated using the instantaneous PSD estimate based on the DKF. In
this case, the time resolution is of 1 sample 1=fs s, where fs is the
sampling frequency. Note the higher time and frequency resolution of
the Kalman PSD estimate. This enables us to know the precise instant
at which the therapeutic intervention occurred and to determine how
much the respiratory rate was changed. The change in respiratory rate
can be calculated from the plot in Fig. 2(e), which shows the instanta-
neous PSD estimates (thin light lines) before and after the intervention.
The average before the change (grey thick line), and the average after
the change (black thick line).

Based only on this simulation study, we cannot claim the DKF is
universally better on all nonstationary signals than all other existing
PSD estimation methods. Further studies are needed to determine in
which situations the DKF PSD estimator performs better than the non-
parametric techniques, and what are its limitations. As it was pointed
out in the introduction, due to the computational efficiency of the non-
parametric PSD estimators, these techniques are well suited for situa-
tions where we need to analyze long data records. In this case, espe-
cially if we do not need very precise time-resolution, we can increase
the window length to improve the frequency resolution of the nonpara-
metric PSD estimates, as long as we do not violate the stationarity as-
sumption. However, in situations where the signals are nonstationary,

short, and we need good time-frequency resolution, the instantaneous
DKF technique we proposed here may be useful.

IV. CONCLUSION

The authors described an algorithm to perform instantaneous AR
modeling and spectral estimation in nonstationary signals using dual
Kalman filters, and demonstrated its potential applicability and use-
fulness by means of two comparative studies, one on simulated signals
and another involving PSD estimation in ICP signals from patients with
TBI. The proposed algorithm was compared with Welch’s method of
PSD estimation. Similar results were obtained when the DKF PSD es-
timator was compared against other standard nonparametric methods
such as the Blackman-Tukey or the modified periodogram. Based on
this preliminary study, we conclude that the DKF estimator is able to
track changes in the PSD better than a moving window technique, and
exhibits good time-frequency resolution when compared with bench-
mark nonparametric PSD techniques at the task of estimating the PSD
of very short data records which are nonstationary. Furthermore, the
proposed method does not assume a piecewise stationary model on the
data.
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