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of the numerical computations. Values of the membrane surface charge
densities and of the displacement and conduction currents permit a de-
tailed understanding of the capacitive processes in a cell exposed to
an external field. Biological implications of the TMP and cytoplasm
electric fields are not clear at this time, because of a lack of relevant
experimental data.
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A Novel Algorithm to Estimate the Pulse Pressure
Variation Index

Mateo Aboy*, James McNames, Tran Thong, Charles R. Phillips,
Miles S. Ellenby, and Brahm Goldstein

Abstract—Wedesigned a newmethodology to estimate the pulse pressure
variation index (�PP) in arterial blood pressure (ABP). The method uses
automatic detection algorithms, kernel smoothing, and rank-order filters to
continuously estimate�PP. The technique can be used to estimate�PP
from ABP alone, eliminating the need for simultaneously acquiring airway
pressure.

Index Terms—Cardiac index (CI), fluid responsiveness, pulse pressure
variation (�PP), respiratory changes in systolic pressure, volume expan-
sion (VE).

I. INTRODUCTION

In this paper, we describe a methodology to estimate the pulse pres-
sure variation index (�PP) in arterial blood pressure (ABP) signals.
Several studies have shown �PP to have important clinical utility
[1]–[3]. In mechanically ventilated patients, �PP has been found to
be a potentially useful dynamic indicator of fluid responsiveness. In a
study involving 40 mechanically ventilated patients with acute circula-
tory failure related to sepsis it was concluded that�PPwas a sensitive
and specific method for predicting and assessing the hemodynamic ef-
fects of volume expansion (VE) [4]. A review study of the indexes used
in intensive care to predict fluid responsiveness found �PP to be one
of the most specific and sensitive predictors of fluid responsiveness in
sedated patients receiving mechanical ventilation with sepsis [5].�PP
has also been shown to be useful in predicting and assessing the hemo-
dynamic effect of positive-end-expiratory pressure and fluid loading in
ventilated patients with acute lung injury (ALI) [6].
The standard method for calculating �PP requires simultaneous

recording of arterial and airway pressure. Pulse pressure (PP) is calcu-
lated on a beat-to-beat basis as the difference between systolic and dias-
tolic arterial pressure. Maximal PP (PPmax) and minimal PP (PPmin)
are calculated over a single respiratory cycle, which is determined from
the airway pressure signal. Pulse pressure variations �PP are calcu-
lated in terms of PPmax and PPmin and expressed as a percentage

�PP(%) = 100�
PPmax � PPmin

(PP +PP )
2

: (1)

Manuscript received August 27, 2003; revised March 6, 2004. This work
was supported in part by the Northwest Health Foundation and in part by the
Doernbecher Children’s Hospital Foundation. Asterisk indicates corresponding
author.
*M. Aboy is with the Biomedical Signal Processing Laboratory, Department

of Electrical and Computer Engineering at Portland State University, 1900 SW
4th Ave., Portland, OR 97201 USA (e-mail: mateoaboy@ieee.org).
J. McNames is with the Biomedical Signal Processing Laboratory, Depart-

ment of Electrical and Computer Engineering at Portland State University, Port-
land, OR 97201 USA.
T. Thong is with the Department of Biomedical Engineering, OGI School of

Science and Engineering at Oregon Health and Science University, Portland,
OR 97206 USA.
C. R. Phillips is with the Pulmonary and Critical Care Medicine Department,

Oregon Health and Science University, Portland, OR 97201 USA.
M. S. Ellenby and B. Goldstein are with the Complex Systems Laboratory in

the Department of Pediatrics at Oregon Health and Science University, Portland,
OR 97201 USA.
Digital Object Identifier 10.1109/TBME.2004.834295

0018-9294/04$20.00 © 2004 IEEE



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 12, DECEMBER 2004 2199

Fig. 1. Illustration of PP and PP during two respiratory cycles of ABP (synthetic).

Fig. 1 shows a plot of anABP signal versus time during six heartbeats
illustrating the PPmax and PPmin metrics used in the calculation of
�PP.
We present a new algorithm to estimate �PP, and an evaluation

of its performance with respect to the standard technique for calcu-
lating�PP. Our proposed methodology can be used to estimate�PP
from the ABP signal alone, eliminating the need for simultaneously ac-
quiring airway pressure.

II. METHODOLOGY

Step 1) Beat Minima Detection: An automatic beat detection algo-
rithm is used to detect each ABP beat. The algorithm performs minima
detection to identify the time location corresponding to the start of each
beat ak

aaa = (a1 a2; . . . ; ak�1 ak ak+1; . . .)
T
: (2)

Beat detection is performed as follows: the pressure signal is prepro-
cessed by three bandpass elliptic filters with different cutoff frequen-
cies: 1) The output of the first bandpass filter is used to estimate the
heart rate based on the estimated power spectral density (PSD). 2) The
estimated heart rate is then used to calculate the cutoff frequencies of
the other two filters. 3) Peak detection and decision logic is performed
based on rank-order (percentile-based) nonlinear filters that incorpo-
rate relative amplitude and slope information to coarsely estimate the
minima preceding each beat (ak). 4) A nearest-neighbor algorithm is
used to combine the information extracted from the relative amplitude
and slope. Finally, 5) an interbeat-interval stage uses this classification
together with the estimated heart rate to make the final classification
and detection of signal components. Since detection is made on the fil-
tered signal, a second nearest neighbor algorithm is used to find the
minima in the raw signal that are closest to the detected components.
A more detailed description of a similar algorithm for detection of sys-
tolic (ABP) and percussion (ICP) peaks is described in [7]. In principle,
however, any reliable automatic beat detection algorithm could be used
in this step.

Step 2) Beat Maxima Detection: The algorithm searches for the
maximum in each beat bk, using the aaa components identified by the
beat detection algorithm in the previous step

bk
�
= arg max

a �n�a
x(n) (3)

bbb =(b1 b2; . . . ; bk�1 bk bk+1; . . .)
T (4)

where x(n) denotes the ABP signal sampled at an arbitrary sampling
rate fs which satisfies the sampling theorem.
Step 3) Beat Mean Calculation: The beat mean pressure �xk is cal-

culated by

�xk
�
=

1

ak+1 � ak + 1

a

k=a

x(k) (5)

�xxx =(�x1 �x2; . . . ; �xk�1 �xk �xk+1; . . .)
T
: (6)

The beat mean pressure �xk is used as an estimate of the additive effect
of respiration on ABP.
Step 4) Pulse Amplitude Pressure: The pulse amplitude pressure pk

is estimated by

pk
�
=x(bk)� x(ak) (7)

ppp =(p1 p2; . . . ; pk�1 pk pk+1; . . .)
T
: (8)

The pulse amplitude pk estimated in this step for each beat is used to
validate the pulse amplitude estimated in Step 6) for each sample. It is
also used to estimate dPP using standard methodology.
Fig. 2 illustrates the first four steps in a synthetic ABP signal.
Step 5) Envelope Estimation: The upper ue(n) and lower le(n) en-

velopes are estimated from the x(aaa) and x(bbb) time series, respectively;
by smoothing and uniformly resampling x(aaa) and x(bbb) at a rate of fs
(sampling frequency of ABP) with a kernel smoother

d(k) =

N

n=1 �(n)b
jkT �t(n)j

�

N

n=1 b
jkT �t(n)j

�

(9)
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Fig. 2. Plot of an ABP signal over a 10-s period illustrating beat minima detection, beat maxima detection, and pulse amplitude pressure calculation.

Fig. 3. Plot of an ABP signal over a 12-s period illustrating (top) envelope estimation, and (bottom) pulse amplitude pressure estimation.

where Ts = (1=fs) is the resampling interval, �b is the kernel width,
and b(�) is a clipped Gaussian kernel function

b(u) = exp �u

2
if �5 � u � 5

0 otherwise.
: (10)

The kernel width is a user specified parameter that controls the degree
of smoothing and depends of the fundamental frequency of the ABP
signal (heart rate). A width of 0.2 s works well for human heart rates.
Step 6) Pulse Amplitude Pressure Estimation: In Step 4), we obtain

an estimate of the pulse amplitude for each beat. Using the estimated
ue(n) and le(n) we can obtain an estimate of the pulse pressure for
each sample of ABP according to

p̂a(n)
�
= ue(n)� le(n) (11)

where p̂a(n) denotes the sample-by-sample difference of ue(n) and
le(n). Fig. 3 illustrates steps 5) and 6).

Step 7) Pulse Pressure Variation Estimation: The pulse pressure
variation index �PP is estimated from the p̂a(n) time series. The
pulse amplitude pressure signal is low-pass filtered with a noncausal
elliptic filter with 1:75fr Hz as the cutoff frequency. The respiratory
frequency fr is estimated from ue (the fundamental frequency of ue is
an estimate of fr .) Minima aaap and maxima bbbp detection are performed
on this signal to estimate the maximum PPmax and minimum pulse
pressures PPmin over each respiratory cycle as

PPmax = p̂a(bbbp) (12)

PPmin = p̂a(aaap): (13)

Based on these estimates we obtain the pulse amplitude variation
�PP according to (14)

�PP = Fmed
PPmax �PPmin

�
; wl (14)
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Fig. 4. Plot of an ABP signal over a 30-s period illustrating pulse pressure variation estimation.

Fig. 5. Results of the simulation study comparing the proposed methodology
and the standard method for estimating �PP as the phase was linearly
increased from 0 to 2 . The true�PP was determined from the modulation
index used in the generation the synthetic signals.

and Fmed(�; wl)where � is the mean over the respiratory cycle

� =
1

ap � ap + 1

a

k=a

p̂a(n) (15)

is a median filter with a window length ofwl samples. The length of the
window wl is a user specified parameter that controls the tradeoff be-
tween time resolution and robustness to noise of the estimates. Longer
windows result in estimates more robust to noise but with less time
resolution. Window lengths of 3–11 samples are adequate for most sit-
uations. Fig. 4 illustrates this step on an ABP signal of 30-s duration
and wl equal to 5 samples.

III. SIMULATION STUDY

In order to assess the performance of the proposed methodology, we
performed the following simulation studies. In all the simulations we
setwl equal to 3 samples. The standard�PP estimate was determined

Fig. 6. Results of the simulation study comparing the proposed methodology
and the standard method for estimating�PP as a function of noise power to
assess their robustness to beat misdetections.

according to the procedure stated in the Introduction section. The esti-
mates over three respiratory cycles were averaged to produce a single
�PP (often done in practice).

A. Comparison of the Proposed Estimator and the Standard�PP as
Estimates of the Respiratory Modulation Index and Their Robustness
to Changes in Respiratory Phase

�PPmeasures the pulse pressure variation of ABPwith respiration,
which is the amplitudemodulation (AM) effect of the respiratory signal
on ABP. As such,�PP is an estimate of the modulation index. In this
simulation we used the followingmodel of ABP, and compared the pro-
posed and standard�PP estimates as estimators of theAMindexa

p(t)=�p+[1 + arn(t)] � [� cos 2�fct+ � cos(4�fct+ �c)]

rn(t)= cos(2�frt+ �) (16)
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Fig. 7. Histograms of the standard�PP and the proposed�PP estimates obtained from the simulation study assessing their consistency when the phase of
the respiratory signal is linearly increased from 0 to 2 . The true�PP (defined in terms of the modulation index) is 20.

Fig. 8. Histograms of the standard�PP and the proposed�PP estimate obtained from the simulation study assessing their robustness to beat misdetections
caused by low SNR. The true�PP is 20.

where p(t) denotes the ABP waveform, �p is the mean ABP pres-
sure, a is the modulation index (AM), rn(t) is the normalized
respiratory signal (modulating signal with frequency fr), and
c(t) = � cos 2�fct+ � cos(4�fct+ �)) are the first twoharmonics of
theABP signal at the cardiac frequency, fc (carrier frequency).
We kept the modulation index constant and changed the phase � of

the respiratory signal, which should result in a constant�PP estimate.
We generated 100 ABP signals with constant modulation index a =

0:1 = 10% (this should result in a �PP = 2a = 20%). The phase
� was linearly increased from 0 to 2�. �PP was estimated using the
standard and proposed methodologies.

B. Comparison of the Proposed Estimator and the Standard �PP
as Function of Noise Power to Assess Their Robustness to Beat
Misdetections

This simulation assessed how robust each method is to beat misde-
tections. We generated an ensemble of 100 synthetic ABP signals of
60-s duration using the ABP simulator described before. We chose
a constant modulation index a = 0:1 = 10% (this should result
in a �PP = 2a = 20%). The noise power was linearly increased
from 0 (SNR = 1 dB) to 225 (SNR � 0 dB). For each 60-s
signal �PP was calculated using the standard method and the new
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methodology we proposed in this paper. The gold standard was de-
fined as �PP calculated according to the standard definition for the
ABP signal without noise. The study compared the two methods as a
function of the SNR. In calculating �PP using the standard method-
ology, the ABP and respiratory signals were used. Gaussian noise was
only added to the ABP signal and not to respiration. In order to elim-
inate the confounding factor of pulse pressure variations with noise,
the noisy ABP signals were only used for beat detection (the same al-
gorithm was used for both methods), �PP estimation was performed
on the uncorrupted ABP signal but using the beat detections obtained
from the corrupted ABP.

IV. RESULTS AND DISCUSSION

Fig. 5 shows the simulation results comparing the standard and the
proposedmethodology as estimates of the respiratorymodulation index
(AM). The instantaneous estimates during the 60 s. of ABP were aver-
aged for a given realization to produce an overall estimate of�PP for
the 60 s. Each�PP estimate shown in this figure is the ensemble mean
of the individual �PP estimated from each of the 100 synthetic ABP
signals. The plot shows that both methods underestimate the true�PP
but the proposed methodology shows a superior statistical performance
since it is less biased and has less variance. These results also indicate
that the proposed methodology is less dependent on respiratory phase
shifts.
Fig. 6 shows the results of the simulation comparing the standard

and proposed methodologies for �PP estimation. In the absence of
noise (high SNR) both methods provide a similar estimate and are
close to the true �PP. However, for low SNR resulting in beat mis-
detections, the proposed methodology exhibits a better performance
even though it is obtained using only the corrupted ABP signal (the
standard method was based on corrupted ABP and clean respiration).
Fig. 7 and 8 show the histograms of the standard and proposed
methodologies for �PP estimation for the two simulation studies.
Based on these histograms we conclude that our new estimate of
�PP is less biased and has less variance than the standard estimate.
The results may differ in real ABP data due to the effects not
accounted in the model. We are currently in the process of applying
our algorithm to real ABP for determining �PP, and comparing
its estimates against the standard method and the estimates obtained
using commercial systems with proprietary algorithms.

V. SUMMARY

We described a new algorithm to estimate �PP based on the ABP
signal alone, which eliminates the need of simultaneous recording of
airway pressure. Preliminary results based on validation of the algo-
rithm with synthetic data indicate the proposed methodology is less
dependent on respiratory phase shifts, is more robust to beat misde-
tections, is a better estimate of the true �PP (obtained from the AM
modulation index), and has better statistical properties.
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A Refined Bootstrap Method for Estimating the Zernike
Polynomial Model Order for Corneal Surfaces

D. Robert Iskander*, Mark R. Morelande, Michael J. Collins, and
Tobias Buehren

Abstract—Following our previous work on optimal modeling of corneal
surfaces with Zernike polynomials, we have developed a refined bootstrap-
based procedure which improves the accuracy of the previous method. We
show that for normal corneas, the optimal number of Zernike terms usually
corresponds to the fourth or fifth radial order expansion of Zernike polyno-
mials. On the other hand, for distorted corneas such as those encountered
in keratoconus or in surgically altered cases, the estimatedmodel was found
to be up to three radial orders higher than for normal corneas.

Index Terms—Cornea, model order selection, resampling techniques.

I. INTRODUCTION

Modeling corneal surfaces with Zernike polynomials often leads to
the question of the number of Zernike terms that should be used [1].
Recently, we have developed a bootstrap-based method to perform this
task [2]. We have shown in simulations that the bootstrap method out-
performs the classical model order selection techniques under the as-
sumption that the measurement noise is independent and identically
distributed (i.i.d.) across the whole corneal surface. In a further study
[3], we have shown that this technique is appropriate in the context of
fitting Zernike polynomials to corneal elevation data of normal subjects
(i.e. subjects with healthy corneas), allowing judicious selection of the
optimal number of Zernike terms.
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